Advertisement

Distribution of P2O5 between solid solution and liquid phase in dephosphorization slag of CaO–SiO2–FeO–P2O5–Na2O system

  • Chuan-ming Du
  • Ning-ning LvEmail author
  • Chang SuEmail author
  • Wei-ming Liu
  • Jin-xing Yang
  • Hai-chuan Wang
Original Paper
  • 17 Downloads

Abstract

A multi-phase slag containing Na2O is potential to efficiently dephosphorize high-P hot metal. After dephosphorization, the generated slag with high P2O5 content is regarded as a P resource. Because P2O5 was mainly concentrated in the 2CaO·SiO2–3CaO·P2O5 solid solution, the recovery of P from dephosphorization slag primarily depends on the separation of the solid solution from other phases. The distribution ratios of P2O5 between solid solution and liquid phase in the CaO–SiO2–FeO–P2O5–Na2O slag system were investigated. The results indicated that the addition of Na2O facilitated the enrichment of P2O5 in the solid solution because it increased not only the distribution ratio of P2O5 but also the mass fraction of the solid solution. The distribution ratio of P2O5 was independent of the P2O5 content in slag. A higher P2O5 content in slag resulted in higher P2O5 and Na2O contents in the solid solution. The distribution ratio of P2O5 increased with the total Fe content in the liquid phase, regardless of the valence of Fe. An increase in the FeO content in slag brought a higher P2O5 content in the solid solution. As slag basicity increased, the distribution ratio of P2O5 increased, but the P2O5 content in the solid solution decreased.

Keywords

Dephosphorization Steelmaking slag Distribution ratio P2O5 2CaO·SiO2–3CaO·P2O5 solid solution 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51704010, 51604003, U1760117) and Key Laboratory Open Project Fund of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology), Ministry of Education (JKF18-02).

References

  1. [1]
    J. Yin, X. Lv, C. Bai, G. Qiu, S. Ma, B. Xie, ISIJ Int. 52 (2012) 1579–1584.CrossRefGoogle Scholar
  2. [2]
    S. Kitamura, F. Pahlevani, Tetsu-to-Hagané 100 (2014) 500–508.CrossRefGoogle Scholar
  3. [3]
    N. Sasaki, Y. Ogawa, K.I. Miyamoto, S. Mukawa, Nippon Steel Tech. Rep. 104 (2013) 26–32.Google Scholar
  4. [4]
    M. Muraki, H. Fukushima, N. Sano, Trans. Iron Steel Inst. Jpn. 25 (1985) 1025–1030.CrossRefGoogle Scholar
  5. [5]
    J.J. Pak, R.J. Fruehan, Metall. Mater. Trans. B 22 (1991) 39–46.CrossRefGoogle Scholar
  6. [6]
    H. Suito, R. Inoue, Trans. Iron Steel Inst. Jpn. 24 (1984) 47–53.CrossRefGoogle Scholar
  7. [7]
    L. Lin, Y.P. Bao, M. Wang, W. Jiang, H.M. Zhou, J. Iron Steel Res. Int. 21 (2014) 496–502.CrossRefGoogle Scholar
  8. [8]
    K. Matsubae, E. Yamasue, T. Inazumi, E. Webeck, T. Miki, T. Nagasaka, Sci. Total Environ. 542 (2016) 1162–1168.CrossRefGoogle Scholar
  9. [9]
    N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 11, 17–19.CrossRefGoogle Scholar
  10. [10]
    N. Wang, Z.G. Liang, M. Chen, Z.S. Zou, J. Iron Steel Res. Int. 18 (2011) No. 12, 22–26.CrossRefGoogle Scholar
  11. [11]
    W. Fix, H. Heymann, R. Heinke, J. Am. Ceram. Soc. 52 (1969) 346–347.CrossRefGoogle Scholar
  12. [12]
    K. Ito, M. Yanagisawa, N. Sano, Tetsu-to-Hagané 68 (1982) 342–344.CrossRefGoogle Scholar
  13. [13]
    K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, T. Nagasaka, ISIJ Int. 47 (2007) 1541–1548.CrossRefGoogle Scholar
  14. [14]
    T. Miki, S. Kaneko, ISIJ Int. 55 (2015) 142–148.CrossRefGoogle Scholar
  15. [15]
    C. Li, J. Gao, Z. Guo, ISIJ Int. 56 (2016) 759–764.CrossRefGoogle Scholar
  16. [16]
    T. Teratoko, N. Maruoka, H. Shibata, S. Kitamura, High Temp. Mat. Pr-Isr. 31 (2012) 329–338.Google Scholar
  17. [17]
    C. Su, N.N. Lv, J.X. Yang, L.S. Wu, H.C. Wang, Y.C. Dong, J. Iron Steel Res. Int. (2018), DOI:  https://doi.org/10.1007/s42243-018-0096-1.
  18. [18]
    C. Du, X. Gao, S. Ueda, S. Kitamura, J. Sustain. Metall. 3 (2017) 671–682.CrossRefGoogle Scholar
  19. [19]
    C. Du, X. Gao, S. Ueda, S. Kitamura, ISIJ Int. 58 (2018) 860–868.CrossRefGoogle Scholar
  20. [20]
    K. Shimauchi, S. Kitamura, H. Shibata, ISIJ Int. 49 (2009) 505–511.CrossRefGoogle Scholar
  21. [21]
    F. Pahlevani, S. Kitamura, H. Shibata, N. Maruoka, ISIJ Int. 50 (2010) 822–829.CrossRefGoogle Scholar
  22. [22]
    S. Xie, W. Wang, Y. Liu, H. Matsuura, ISIJ Int. 54 (2014) 766–773.CrossRefGoogle Scholar
  23. [23]
    L. Lin, Y. Bao, W. Jiang, Q. Wu, ISIJ Int. 55 (2015) 552–558.CrossRefGoogle Scholar
  24. [24]
    C. Du, X. Gao, S. Ueda, S. Kitamura, Metall. Mater. Trans. B 49 (2018) 181–189.CrossRefGoogle Scholar
  25. [25]
    I. Sohn, D.J. Min, Steel Res. Int. 83 (2012) 611–630.CrossRefGoogle Scholar
  26. [26]
    U. Mizutani, Hume-Rothery rules for structurally complex alloy phases, Taylor & Francis, London, 2010.CrossRefGoogle Scholar
  27. [27]
    S. Ban-ya, ISIJ Int. 33 (1993) 2–11.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan
  2. 2.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina
  3. 3.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology)Ministry of EducationMa’anshanChina

Personalised recommendations