Advertisement

Effect of normalization on texture evolution of 0.2-mm-thick thin-gauge non-oriented electrical steels with strong η-fiber textures

  • Jing Qin
  • De-fu Liu
  • Ye Yue
  • Hong-jin Zhao
  • Chao-bin LaiEmail author
Original Paper
  • 8 Downloads

Abstract

Thin-gauge non-oriented electrical steel sheets of 0.2 mm in thickness with high magnetic induction and low core loss were produced by a two-stage cold-rolling method with and without normalization annealing. The through-process texture evolutions of the two processes were compared and studied by means of X-ray diffractometer and electron backscattered diffraction. Results showed that excellent magnetic properties were attributed to strong η-fiber recrystallization texture in the final sheet. Coarse γ-fiber-oriented grains after intermediate annealing and medium cold-rolling reduction were considered key factors to obtain a strong η-fiber texture given that a large number of shear bands within the γ-fiber deformed matrix provided dominant nucleation sites for η-fiber-oriented grains. The normalization annealing after hot rolling was favorable for the retention of cube texture, thereby decreasing the magnetic anisotropy of thin-gauge non-oriented electrical steels.

Keywords

Thin-gauge non-oriented electrical steel Two-stage cold-rolling method Microstructure Texture evolution Magnetic property 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51704131 51464011, and 51664021), the Natural Science Foundation of Jiangxi Province, China (No. 20171ACB20020), and the Doctor Start-up Foundation at Jiangxi University of Science and Technology (No. jxxjbs16005).

References

  1. [1]
    M. Komatsubara, K. Sadahiro, O. Kondo, T. Takamiya, A. Honda, J. Magn. Magn. Mater. 242 (2002) 212–215.CrossRefGoogle Scholar
  2. [2]
    Y. Oda, M. Kohno, A. Honda, J. Magn. Magn. Mater. 320 (2008) 2430–2435.CrossRefGoogle Scholar
  3. [3]
    J. Salinas-Beltrán, A. Salinas-Rodríguez, E. Gutiérrez-Castañeda, R. Deaquino Lara, J. Magn. Magn. Mater. 406 (2016) 159–165.Google Scholar
  4. [4]
    M.N. Ibrahim, P. Sergeant, E.M. Rashad, IEEE Trans. Magn. 51 (2015) 1–4.CrossRefGoogle Scholar
  5. [5]
    T. Yonamine, M. Fukuhara, F.J.G. Landgraf, C.A. Achete, F.P. Missell, IEEE Trans. Magn. 42 (2006) 2812–2814.CrossRefGoogle Scholar
  6. [6]
    I. Tanaka, H. Yashiki, in: TMS (Ed.), 140th Annual Meeting and Exhibition, The Minerals, Metals & Materials Society, San Diego, California, USA, 2011, pp. 339–346.Google Scholar
  7. [7]
    N. Zhang, P. Yang , W. M. Mao, J. Magn. Magn. Mater. 397 (2016) 125–131.CrossRefGoogle Scholar
  8. [8]
    S.C. Paolinelli, M.A. Cunha, A.B. Cota, J. Magn. Magn. Mater. 320 (2008) e641–e644.CrossRefGoogle Scholar
  9. [9]
    S.S.F. Dafe, S.C. Paolinelli, A.B. Cota, J. Magn. Magn. Mater. 323 (2011) 3234–3238.CrossRefGoogle Scholar
  10. [10]
    S. Lee, B.C. Cooman, ISIJ Int. 51 (2011) 1545–1552.CrossRefGoogle Scholar
  11. [11]
    J. Wang, J. Li, X.F. Wang, X.C. Mi, S.G. Zhang, Bull. Mater. Sci. 34 (2011) 1477–1482.CrossRefGoogle Scholar
  12. [12]
    D. Dorner, S. Zaefferer, D. Raabe, Acta Mater. 55 (2007) 2519–2530.CrossRefGoogle Scholar
  13. [13]
    C.L. Zhang, H.T. Liu, Y.X. Zhang, G.M. Cao, Z.Y. Liu, T. Mater. Heat Treat. 33 (2012) No. 10, 62–67.Google Scholar
  14. [14]
    H. Dong, Y. Zhao, X.J. Yu, F.Z Lian, J. Iron Steel Res. Int. 16 (2009) No. 6, 86–89.Google Scholar
  15. [15]
    X. Miao, Y.H. Wei, W.K. Zhang, X.Y. Wang, Special Steel 35 (2014) No. 2, 57–59.Google Scholar
  16. [16]
    H.T. Jiao , Y.B. Xu, W. Xiong, Y.X. Zhang, G.M. Cao, C.G. Li, J. Niu, R.D.K. Misra, Mater. Des. 136 (2017) 23–33.CrossRefGoogle Scholar
  17. [17]
    Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, S.R. Kalidindi, L. Zuo, Acta Mater. 76 (2014) 106–117.CrossRefGoogle Scholar
  18. [18]
    M. Oyarzábal, A. Martinez-de-Guerenu, I. Gutiérrezab, Mater. Sci. Eng. A 485 (2008) 200–209.CrossRefGoogle Scholar
  19. [19]
    P. Ghosh, R.R. Chromik, B. Vaseghi, A.M. Knight, J. Magn. Magn. Mater. 365 (2014) 14–22.CrossRefGoogle Scholar
  20. [20]
    N. Tsuji, K. Tsuzaki, T. Maki, ISIJ Int. 34 (1994) 1008–1017.CrossRefGoogle Scholar
  21. [21]
    J.T. Park, J.A. Szpunar, Acta Mater. 51 (2003) 3037–3051.CrossRefGoogle Scholar
  22. [22]
    Y. Hayakawa, M. Kurosawa, Acta Mater. 50 (2002) 4527–4534.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.School of Metallurgy and Chemical EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations