A compact streamfunction-velocity scheme for the 2D unsteady incompressible Navier-Stokes equations in arbitrary curvilinear coordinates

  • Jian-xin Qiu (仇建新)
  • Bo Peng (彭博)
  • Zhen-fu Tian (田振夫)Email author


A streamfunction-velocity formulation-based compact difference method is suggested for solving the unsteady incompressible Navier-Stokes equations in the arbitrary curvilinear coordinates, in which the streamfunction and its first derivatives as the unknown variables are utilized. Numerical examples, involving the boundary layer problem, a constricted channel flow, driven polar cavity flow and trapezoidal cavity flow problem, are solved by the present method. Numerical results demonstrate the accuracy of the currently proposed scheme and exhibit the numerical capability to simulate the flow problems on geometries beyond rectangular. For driven polar cavity flow problem, the results show that the flow phenomena for Re = 5000 is not steady rather time-periodic, and the critical Reynold number (Rec) for the occurrence of a Hopf bifurcation is given.

Key words

Streamfunction-velocity formulation arbitrary curvilinear coordinates compact scheme unsteady incompressible flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Tian Z. F., Ge Y. B. A fourth-order compact finite difference scheme for the steady stream function-vorticity formulation of the Navier-Stokes/Boussinesq equations [J]. International Journal for Numerical Methods in Fluids, 2003, 41: 495–518.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Wang J., Zhong W., Zhang J. High order compact computation and nonuniform grids for streamfunction vorticity equations [J]. Applied Mathematics and Computation, 2006, 179: 108–120.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Ge Y. B., Cao F. J. Multigrid method based on the transformation-free HOC scheme on nonuniform grids for 2D convection diffusion problems [J]. Journal of Computational Physics, 2011, 230: 4051–4070.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Kupferman P. A central difference scheme for a pure streamfunction formulation of incom-pressible viscous flow [J]. SIAM Journal on Scientific Computing, 2001, 23: 1–18.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Pérez Guerrero J. N. N., Quaresma J. N. N., Cotta R. M. Simulation of laminar flow inside ducts of irregular geometry using integral transforms [J]. Computational Mechanics, 2000, 24: 413–420.CrossRefzbMATHGoogle Scholar
  6. [6]
    Fishelov D., Ben-Artzi M., Croisille J. P. Recent developments in the pure streamfunction formulation of the Navier-Stokes system [J]. Journal of Scientific Computing, 2010, 45: 238–258.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Tian Z. F., Yu P. X. An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations [J]. Journal of Computational Physics, 2011, 230: 6404–6419.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Kalita J. C., Gupta M. M. A streamfunction-velocity approach for the 2D transient incompressible viscous flows [J]. International Journal for Numerical Methods in Fluids, 2010, 62: 237–266.MathSciNetzbMATHGoogle Scholar
  9. [9]
    Pandit S. K., Karmakar H. An efficient implicit compact streamfunction velocity formulation of two dimensional flows [J]. Journal of Scientific Computing, 2016, 68: 653–688.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Yu P. X., Tian Z. F. A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier-Stokes equations in polar coordinates [J]. Journal of Scientific Computing, 2013, 56: 165–189.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Pandit S. K., On the use of compact streamfunction -velocity formulation of steady Navier-Stokes equations on geometries beyond rectangular [J]. Journal of Scientific Computing, 2008, 36: 219–242.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Sen S., Kalita J. C., Gupta M. M. A robust implicit compact scheme for two-dimensional unsteady flows with a biharmonic stream function formulation [J]. Computer and Fluids, 2013, 84: 141–163.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Sen S., Kalita J. C. A 4OEC scheme for the biharmonic steady Navier-Stokes equations in non-Rectangular domains [J]. Computer Physics Communications, 2015, 196: 113–133.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Mancera P. F. A. A study of numerical solution of the steady two dimensional Navier-Stokes equations in a constricted channel problem by a compact fourth order method [J]. Applied Mathematics and Computation, 2003, 146: 771–790.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Shah A., Hong G., Li Y. A third-order upwind compact scheme on curvilinear meshes for the incompressible Navier-Stokes equations [J]. Communications in Computational Physics, 2009, 5: 712–729.MathSciNetzbMATHGoogle Scholar
  16. [16]
    Pandit S. K., Kalita J. C., Dalal D. C. A fourth-order accurate compact scheme for the solution of steady Navier-Stokes equations on non-uniform grids [J]. Computer and Fluids, 2008, 37: 121–134.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Fuchs L., Tillmark N. Numerical and experimental study of driven flow in a polar cavity [J]. International Journal for Numerical Methods in Fluids, 1985, 5: 311–329.CrossRefGoogle Scholar
  18. [18]
    McQuain W. D., Ribbens C., Wang C. W. Steady viscous flow in a trapezoidal cavity [J]. Computer and Fluids, 1994, 23: 23–613.CrossRefzbMATHGoogle Scholar
  19. [19]
    Zhang T., Shi B. C., Chai Z. H. Lattice Boltzmann simulation of lid-driven flow in trapezoidal cavities [J]. Computer and Fluids, 2010, 39: 1977–1989.CrossRefzbMATHGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Jian-xin Qiu (仇建新)
    • 1
  • Bo Peng (彭博)
    • 1
  • Zhen-fu Tian (田振夫)
    • 1
    Email author
  1. 1.Department of Mechanics and Engineering ScienceFudan UniversityShanghaiChina

Personalised recommendations