Study on the internal characteristics of stall in a centrifugal pump by a cubic non-linear SGS model

  • Xian-bei Huang (黄先北)
  • Zhu-qing Liu (刘竹青)
  • Yao-jun Li (黎耀军)
  • Wei Yang (杨魏)
  • Qiang Guo (郭嫱)


The stall in a centrifugal pump impeller at quarter-load condition is investigated using a third-order SGS model named DCNM, aiming at a better understanding of the rotation effect on the stall phenomenon. The study on the distributions of Reynolds stresses, production term and rotation term reveals that the joint effect of production and rotation results in the non-uniform Reynolds stress distribution. Further study on the two components of the summation of production and rotation shows that the joint effect of them is transporting certain energy from Reynolds component Rvv to Ruu.

Key words

Centrifugal pump large-eddy simulation non-linear model OpenFOAM stall 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gülich J. F. Centrifugal pumps [M]. Berlin: Springer, 2014.CrossRefGoogle Scholar
  2. [2]
    Stein A., Niazi S., Sankar L. N. Computational analysis of stall and separation control in centrifugal compressors [J]. Journal of Propulsion and Power, 2000, 16: 65–71.CrossRefGoogle Scholar
  3. [3]
    Crevel F., Gourdain N., Moreau S. Numerical simulation of aerodynamic instabilities in a multistage high-speed high-pressure compressor on its test-rig-part I: rotating stall [J]. Journal of Turbomachinery, 2014, 136: 101003.CrossRefGoogle Scholar
  4. [4]
    Emmons H. W., Pearson C. F., Grant H. P. Compressor surge and stall propagation [J]. Transactions of the ASME, 1955, 77: 455–469.Google Scholar
  5. [5]
    Sinha M., Katz J. On the onset and development of rotating stall within a vaned diffuser of a centrifugal pump [C]. ASME/JSME Fluids Engineering Division Summer Meeting, Boston, Massachusetts, 2000, FEDSM 2000–11241.Google Scholar
  6. [6]
    Pedersen N., Larsen P. S., Jacobsen C. B. Flow in a centrifugal pump impeller at design and off-design conditions-part I: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements [J]. Journal of Fluids Engineering, 2003, 125: 61–72.CrossRefGoogle Scholar
  7. [7]
    Berten S., Dupont P., Fabre L. et al., Experimental investigation of flow instabilities and rotating stall in a high energy centrifugal pump stage [C]. Proceedings of the 2009 ASME Fluids Engineering Division Summer Conference, Vail, Co, 2009, 505–513.Google Scholar
  8. [8]
    Krause N., Zähringer K., Pap E. Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump [J]. Experiments in Fluids, 2005, 39: 192–201.CrossRefGoogle Scholar
  9. [9]
    Grundestam O., Wallin S., Johansson A. V. Direct numerical simulations of rotating turbulent channel flow [J]. Journal of Fluid Mechanics, 2008, 598: 177–199.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Yang Z. X., Cui G. X., Xu C. X. et al., Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model [J]. Journal of Turbulence, 2012, 13: 1–20.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Feng J. J., Benra F. K., Dohmen H. J. Comparison of periodic flow fields in a radial pump among CFD, PIV, and LDV results [J]. International Journal of Rotating Machinery, 2009, 2009: 410838.CrossRefGoogle Scholar
  12. [12]
    Dazin A., Cavazzini G., Pavesi G. et al., High-speed stereoscopic PIV study of rotating instabilities in a radial vaneless diffuser [J]. Experiments in Fluids, 2011, 51: 83–93.CrossRefGoogle Scholar
  13. [13]
    Smagorinsky J. General circulation experiments with the primitive equations: I. The basic euqations [J]. Mon. Weather, 1963, 91: 99–164.CrossRefGoogle Scholar
  14. [14]
    Tao B., Katz J., Meneveau C. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements [J]. Journal of Fluid Mechanics, 2002, 457: 35–78.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Horiuti K. Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence generation [J]. Journal of Fluid Mechanics, 2003, 491: 65–100.CrossRefzbMATHGoogle Scholar
  16. [16]
    Huang X. B., Liu Z. Q., Yang W. et al. A cubic non-linear SGS model for large-eddy simulation [J]. Journal of Fluids Engineering, 2017, 139: 041101.CrossRefGoogle Scholar
  17. [17]
    Germano M. Turbulence: the filtering approach [J]. Journal of Fluid Mechanics, 1992, 238: 325–336.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Lily D.K., A proposed modification of the Germano subgrid-scale closure method [J]. Physics of Fluids A-Fluid Dynamics, 1992, 4: 633–635.CrossRefGoogle Scholar
  19. [19]
    Wang B. C., Bergstrom D. J. A dynamic nonlinear subgrid-scale stress model [J]. Physics of Fluids, 2005, 17: 035109.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Byskov R. K., Jacobsen C. B., Pedersen N. Flow in a centrifugal pump impeller at design and off-design conditions–part II: large eddy simulations [J]. Journal of Fluids Engineering, 2003, 125: 73–83.CrossRefGoogle Scholar
  21. [21]
    OpenCFD, OpenFOAM®. The Open Source CFD Toolbox, “User Guide” [Z]. OpenCFD ltd, Berkshire, 2012.Google Scholar
  22. [22]
    Celik I. S., Ghia U., Roache P. J. et al., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications [J]. Journal of Fluids Engineering, 2008, 130: 078001.CrossRefGoogle Scholar
  23. [23]
    Zhou P. J. Investigation of stall characteristics in centrifugal pumps [D]. Beijing, China: China Agricultural University, 2015 (in Chinese)Google Scholar
  24. [24]
    Borello D., Salvagni A., Hanjalic K., Effects of rotation on flow in an asymmetric rib-roughened duct: LES study [J]. International Journal of Heat and Fluid Flow, 2015, 55: 104–119.CrossRefGoogle Scholar
  25. [25]
    Huang X. B., Liu Z.Q., Yang W. Comparative study of SGS models for simulating the flow in a centrifugal-pump impeller using single passage [J]. Engineering Computations, 2015, 32: 2120–2135.CrossRefGoogle Scholar
  26. [26]
    Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]. Journal of Hydrodynamics, 2017, 29: 610–620.CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Xian-bei Huang (黄先北)
    • 1
  • Zhu-qing Liu (刘竹青)
    • 2
  • Yao-jun Li (黎耀军)
    • 2
  • Wei Yang (杨魏)
    • 2
  • Qiang Guo (郭嫱)
    • 1
  1. 1.School of Hydraulic Energy and Power EngineeringYangzhou UniversityYangzhouChina
  2. 2.College of Water Resources and Civil EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations