Evaluation of the hemolysis and fluid dynamics of a ventricular assist device under the pulsatile flow condition

  • Huan Li (李寰)
  • Zhe Gou (勾哲)
  • Feng Huang (黄峰)
  • Xiao-dong Ruan (阮晓东)Email author
  • Wen-wei Qian (钱文伟)
  • Xin Fu (付新)


When the rotary blood pumps are used as ventricular assist devices, the pump flow rate will have a pulsatile component even at a constant impeller rotational speed due to the remaining beating of the natural heart. However, previous studies on the in vitro hemolysis evaluation of a rotary blood pump have always been conducted under steady states and didn’t consider this pulsation. In this study, the hemolysis in a centrifugal blood pump is evaluated under the pulsatile flow condition in vitro. The required time-varying flow rate is obtained by conducting a system simulation of the pump-assisted cardiovascular system, and realized by controlling a pulsation unit in the experiments. The results of our tests indicate a significant increase in hemolysis under the pulsatile flow condition compared with the non-pulsatile condition. To reveal the flow characteristics responsible for the higher hemolysis, transient computational fluid dynamic simulations are then performed. This study suggests that traditional hemolysis evaluation under the steady states may not fully represent the hemolytic performance in the clinical use. For the ventricular assist pumps at the design stage, eliminating the concern about the extra hemolysis under the pulsatile condition will be helpful for the subsequent in vivo experiments.

Key words

Ventricular assist devices hemolysis pulsatile flow cardiovascular system numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hu Z. J., Wang L. L., Tang H. W. et al. Prediction of the future flood severity in plain river network region based on numerical model: a case study [J]. Journal of Hydrodynamics, 2017, 29(4): 586-595CrossRefGoogle Scholar
  2. [1]
    Jeffrey A. LaRose, Tamez D. et al. Design concepts and principle of operation of the HeartWare ventricular assist system [J, ASAIO Journal, 2010, 56(4): 285–289.Google Scholar
  3. [2]
    Daners M. S., Kaufmann F., Amacher R. et al. Left ventricular assist devices: challenges toward sustaining long–term patient care [J]. Annals of Biomedical Engineering, 2017, 24(8): 1836–1851.CrossRefGoogle Scholar
  4. [3]
    Yamazaki K., Saito S., Kihara S. et al. Completely pulsatile high flow circulatory support with a constant–speed centrifugal blood pump: mechanisms and early clinical observations [J], General Thoracic and Cardiovascular Surgery, 2007, 55(4): 158–162.CrossRefGoogle Scholar
  5. [4]
    Noor M. R., Ho C. H., Parker K. H. et al. Investigation of the characteristics of HeartWare HVAD and Thoratec HeartMate II under steady and pulsatile flow conditions [J], Artificial Organs, 2015, 40(6): 549–560.CrossRefGoogle Scholar
  6. [5]
    Taskin M. E., Fraser K. H., Zhang T. et al. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support [J], Artificial Organs, 2010, 34(12): 1099–1113.CrossRefGoogle Scholar
  7. [6]
    Li T. Y., Ye L., Hong F. W. et al. The simulation of multiphase flow field in implantable blood pump and analysis of hemolytic capability [J], Journal of Hydrodynamics, 2013, 25(4): 606–615.CrossRefGoogle Scholar
  8. [7]
    Han Q., Zou J., Ruan X. D. et al. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump [J]. Artificial Organs, 2012, 36(8): 739–746.CrossRefGoogle Scholar
  9. [8]
    Vandenberghe S., Segers P., Meyns B. et al. Effect of rotary blood pump failure on left ventricular energetics assessed by mathematical modeling [J], Artificial Organs, 2002, 26(12): 1032–1039.CrossRefGoogle Scholar
  10. [9]
    Shi Y., Lawford P. V., Hose D. R. Numerical modeling of hemodynamics with pulsatile impeller pump support [J], Annals of Biomedical Engineering, 2010, 38(8): 2621–2634.CrossRefGoogle Scholar
  11. [10]
    Shi Y., Korakianitis T. Numerical simulation of cardiovascular dynamics with left heart failure and in–series pulsatile ventricular assist device [J], Artificial Organs, 2006, 30(12): 929–948.CrossRefGoogle Scholar
  12. [11]
    Vermette P., Thibault J., Laroche G. A continuous and pulsatile flow circulation system for evaluation of cardiovascular devices [J]. Artificial Organs, 1998, 22(9): 746–752.CrossRefGoogle Scholar
  13. [12]
    Han Q. Research on structure design and hemocompatibility of hydrodynamic bearing in artificial heart [D]. Doctoral Thesis, Hangzhou, China: Zhejiang University, 2012 (in Chinese).Google Scholar
  14. [13]
    Kosaka R., Yasui K., Nishida M. et al. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis [J], Artificial Organs, 2014, 38(9): 818–822.CrossRefGoogle Scholar
  15. [14]
    Kataoka H., Kimura Y., Fujita H. et al. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump [J], Artificial Organs, 2006, 30(11): 841–854.CrossRefGoogle Scholar
  16. [15]
    Luo X. W., Ji B., Zhuang B. T. et al. A miniature pump with a fluid dynamic bearing [J]. Science China Technological Sciences, 2012, 55(3): 795–801.CrossRefGoogle Scholar
  17. [16]
    Garon A., Farinas M. I. Fast three–dimensional numerical hemolysis approximation [J], Artificial Organs, 2004, 28(11): 1016–1025.CrossRefGoogle Scholar
  18. [17]
    Giersiepen M., Wurzinger L., Opitz R. et al. Estimation of shear stress–related blood damage in heart valve prostheses — in vitro comparison of 25 aortic valves [J], The International Journal of Artificial Organs, 1990, 13(5): 300.CrossRefGoogle Scholar
  19. [18]
    Bludszuweit C. Model for a general mechanical blood damage prediction [J], Artificial Organs, 1995, 19(7): 583–589.CrossRefGoogle Scholar
  20. [19]
    Taskin M. E., Fraser K. H., Zhang T. et al. Evaluation of Eulerian and Lagrangian models for hemolysis estimation [J], ASAIO Journal, 2012, 58(4): 363–372.CrossRefGoogle Scholar
  21. [20]
    Song X. W., Throckmorton A. L., Wood H. G. et al. Quantitative evaluation of blood damage in a centrifugal VAD by computational fluid dynamics [J], Journal of Fluids Engineering–Transactions of the Asme, 2004, 126(3): 410–418.CrossRefGoogle Scholar
  22. [21]
    Chen H. X., Ma Z., Zhang W. et al. On the hydrodynamics of hydraulic machinery and flow control, Journal of Hydrodynamics, 2017, 29(5): 782–789.CrossRefGoogle Scholar
  23. [22]
    Song X. W., Untaroiu A., Wood H. G. et al. Design and transient computational fluid dynamics study of a continuous axial flow ventricular assist device [J], ASAIO Journal, 2004, 50(3): 215–224.CrossRefGoogle Scholar
  24. [23]
    Throckmorton A. L., Tahir S. A., Lopes S. P. et al. Steady and transient flow analysis of a magnetically levitated pediatric VAD: time varying boundary conditions [J], The International Journal of Artificial Organs, 2013, 36(10): 693–699.CrossRefGoogle Scholar
  25. [24]
    Tayama E., Nakazawa T., Takami Y. et al. The hemolysis test of the Gyro C1E3 pump in pulsatile mode [J], Artificial Organs, 1997, 21(7): 675–679CrossRefGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Huan Li (李寰)
    • 1
  • Zhe Gou (勾哲)
    • 1
  • Feng Huang (黄峰)
    • 2
  • Xiao-dong Ruan (阮晓东)
    • 1
    Email author
  • Wen-wei Qian (钱文伟)
    • 3
  • Xin Fu (付新)
    • 1
  1. 1.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
  2. 2.College of Metrology and Measurement EngineeringChina Jiliang UniversityHangzhouChina
  3. 3.Department of Cardio-chest SurgeryZhejiang Provincial People’s HospitalHangzhouChina

Personalised recommendations