Advertisement

An Integrated Optimization Design of a Fishing Ship Hullform at Different Speeds

  • Lei Yang (杨磊)
  • Sheng-zhong Li (李胜忠)
  • Feng Zhao (赵峰)
  • Qi-jun Ni (倪其军)
Article

Abstract

The purpose of this paper is to show how the improvement of the hydrodynamics performance of a ship can be achieved by solving a shape optimization design problem at different speeds using the Simulation-Based Design (SBD) technique. The SBD technique has been realized by integrating advanced CFD codes, global optimization algorithms and geometry modification methods, which offers a new way for hullform optimization design and configuration innovation. Multiple speeds integrated optimization has been a challenge for hullform design. In this paper, an example of the technique application for a fishing ship hullform optimization at different speeds is demonstrated. In this process, Free-form Deformation method is applied to automatically modify the geometry of ship, and the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is adopted for exploring the design space. Two objective functions, the total resistances at two different speeds (12kn and 14kn) are assessed by RANS solvers. The optimization results show that the decrease of total resistance is significant for the optimization case at the two speeds, with a reduction of 5.0% and 11.2% respectively. Finally, dedicated experimental campaigns for the design model and the optimized model are carried out to validate the computations and the optimization processes. At the two speeds, the reduction of the total resistance in model scale is about 6.0% and 11.8% for the optimized case. These are a valuable result considering the small modifications allowed and the good initial performances of the original model. The given practical example demonstrates the feasibility and superiority of the proposed SBD technique for multiple speeds integrated optimization problem.

Key words

Hullform design optimization SBD techniques multiple speeds optimization CFD techniques total resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would also like to thank Liang Yun-fang for their assistances in preparing the manuscript.

References

  1. [1]
    Kim H J, Chun H H. Optimizing using Parametric Modification Functions and Global Optimization Methods[C]. 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008.Google Scholar
  2. [2]
    Campana E F, Peri D, Tahara Y, Kandasamy M, and Stern F. Numerical Optimization Methods for Ship Hydrodynamic Design [C]. SNAME Annual Meeting, 2009.Google Scholar
  3. [3]
    Diez M, Fasano G, Peri D, Campana E F. Multidisciplinary Robust Optimization for Ship Design [C]. 28th Symposium on Naval Hydrodynamics, 2010.Google Scholar
  4. [4]
    Han S, Lee Y S, Choi Y B. Hydrodynamic hull form optimization using parametric models [J]. Journal Mar. Sci. Technol., 2012.Google Scholar
  5. [5]
    Li Sheng-Zhong, Zhao Feng. An innovative hullform design technique for low carbon shipping [J]. Journal of Shipping and Ocean Engineering, 2012, 2(1): 28–35.Google Scholar
  6. [6]
    Peri D, Rossetti M, Campana E F. Design optimization of ship hulls via CFD techniques [J]. Journal of Ship Research, 2001, 45(2): 140–149.Google Scholar
  7. [7]
    Peri D, Campana E F. Multidisciplinary Design Optimization of a Naval Surface Combatant [J]. Journal of Ship Research, 2003, 47(1): 1–12.Google Scholar
  8. [8]
    Peri D, Kandasamy M, Tahara Y. Simulation Based Design with Variable Physics Modeling and Experimental Verification of a waterjet propelled Catamaran [C]. 29th Symposium on Naval Hydrodynamics, Gothenburg, Sweden, 2012. 26–31.Google Scholar
  9. [9]
    Auke van der Ploeg and Hoyte Raven. CFD-Based Optimization for Minimal Power and Wake Field quality [C]. 11th international symposium on practical design of ships and other floating structures, Rio de Janeiro, RJ, Brazil, 2010.Google Scholar
  10. [10]
    Kim H, Yang C, Chun H H. A Combined Local and Global Hull Form Modification Approach for Hydrodynamic Optimization [C]. 28th Symposium on Naval Hydrodynamics, 2010.Google Scholar
  11. [11]
    Campana E F, Peri D, Tahara Y, and Stern F. Comparison and validation of CFD based local optimization methods for surface combatant bow [C]. The 25th Symposium on Naval Hydrodynamics, Canada, 2004.Google Scholar
  12. [12]
    Sierra M R, Coello A C. Improving PSO-based multi-objective optimization using crowding, mutation and ε-dominance [C]. Proc of the 3rd International Conference on Evolutionary Multi-Criterion Optimization,2005, 505–519.CrossRefGoogle Scholar
  13. [13]
    Santos Coelho L, Herrera B M. Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo-yo motion system [J]. IEEE Trans. Ind. Electron., 2007, 54(6): 3234–3245.CrossRefGoogle Scholar
  14. [14]
    Li Sheng-Zhong, Yang Lei, Zhao Feng, Zhou Bin, Cheng Ming-dao. A Practical Global Optimization Method for Ship Integrated Hydrodynamic Performance Design [C], The 5th Asia-Pacific Workshop on Marine Hydrodymics-APHydro2010. Osaka, Japan. 2010.Google Scholar
  15. [15]
    Li Sheng-Zhong. Research on Hull Form Design Optimization Based on SBD Technique. Doctoral Thesis, Wuxi, China: China Ship Scientific Research Center, 2012.Google Scholar
  16. [16]
    Li Sheng-Zhong, Zhao Feng, Ni Qi-Jun. Bow and Stern Shape Integrated Optimization for a Full Ship by SBD Technique[J]. Journal of Ship Research, 2014, 58(2): 1–14.CrossRefGoogle Scholar
  17. [17]
    Zhao Feng, Zhu Song-ping, Zhang Zhi-rong. Numerical Experiments of a Benchmark Hull Based on a Turbulent Free-Surface Flow Model [J]. Computer Modeling in Engineering and Sciences, 2005, 9(3): 273–286.Google Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  • Lei Yang (杨磊)
    • 1
  • Sheng-zhong Li (李胜忠)
    • 1
  • Feng Zhao (赵峰)
    • 1
  • Qi-jun Ni (倪其军)
    • 1
  1. 1.China Ship Scientific Research CenterWuxiChina

Personalised recommendations