Advertisement

Journal of Hydrodynamics

, Volume 30, Issue 4, pp 657–671 | Cite as

Scale adaptive simulation of vortex structures past a square cylinder

  • Javad Aminian
Articles
  • 25 Downloads

Abstract

The scale adaptive simulation (SAS) turbulence model is evaluated on a turbulent flow past a square cylinder using the open-source CFD package OpenFOAM 2.3.0. Two and three-dimensional simulations are performed to determine global quantities like drag and lift coefficients and Strouhal number in addition to mean and fluctuating velocity profiles in the recirculation and wake regions. SAS model is evaluated against the Shear Stress Transport k - ω (SST) model and also compared with previously reported results based on DES, LES and DNS turbulence approaches. Results show that global quantities along with mean velocity profiles are well-captured by 2-D SAS model. The 3-D SAS model also succeeded in providing comparable results with recently published DES study on Reynolds shear stress and velocity fluctuation components using about 12 times lower computational cost. It is shown that large values of the SAS model constant result in too dissipative behavior, so that proper calibration of the SAS model constant for different turbulent flows is vital.

Key words

Scale adaptive simulation (SAS) turbulence model bluff body mean and fluctuating properties anisotropic turbulence computational costs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the Research Center of the Shahid Beheshti University (SBU). We are thankful to the SBU cluster “SARMAD” officials which provided access to a high performance computing system.

References

  1. [1]
    Williamson C. H. K. Vortex dynamics in the cylinder wake [J]. Annual Review of Fluid Mechanics, 1996, 28(1): 477–539.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Roshko A. On the development of turbulent wakes from vortex streets [R]. NACA Report 1191, 1954.Google Scholar
  3. [3]
    Durao D. F. G., Heitor M. V., Pereira J. C. F. Measurements of turbulent and periodic flows around a square cross-section cylinder [J]. Experiments in Fluids, 1988, 6(5): 298–304.CrossRefGoogle Scholar
  4. [4]
    Saha A. K., Muralidhar K., Biswas G. Experimental study of flow past a square cylinder at high Reynolds numbers [J]. Experiments in Fluids, 2000, 29(6): 553–563.CrossRefGoogle Scholar
  5. [5]
    Lyn D. A., Einav S., Rodi W. et al. A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder [J]. Journal of Fluid Mechanics, 1995, 304: 285–319.CrossRefGoogle Scholar
  6. [6]
    Trias F. X., Gorobets A., Oliva A. Turbulent flow around a square cylinder at Reynolds number 22000: A DNS study [J]. Computers and Fluids, 2015, 123: 87–98.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Sohankar A., Davidson L., Norberg C. Large eddy simulation of flow past a square cylinder: Comparison of different sub-grid scale models [J]. Journal of Fluids Engineering, 2000, 122(1): 39–47.CrossRefGoogle Scholar
  8. [8]
    Sohankar A. Flow over a bluff body from moderate to high Reynolds numbers using large eddy simulation [J]. Computers and Fluids, 2006, 35(10): 1154–1168.CrossRefzbMATHGoogle Scholar
  9. [9]
    Liou T. M., Chen S. H., Hwang P. W. Large eddy simulation of turbulent wake behind a square cylinder with a nearby wall [J]. Journal of Fluids Engineering, 2002, 124(1–2): 81–90.CrossRefGoogle Scholar
  10. [10]
    Bouris D., Bergeles G. 2D LES of vortex shedding from a square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1–2): 31–46.CrossRefGoogle Scholar
  11. [11]
    Rodi W., Ferziger J.H., Breuer M. et al. Status of large eddy simulation: results of a workshop [J]. Journal of Fluids Engineering, 1997, 119(2): 248–262.CrossRefGoogle Scholar
  12. [12]
    Shen S. C., Wang M., Lu H. et al. The numerical and experimental investigations of the near wake behind a modified square stay-cable [J]. Journal of Hydrodynamics, 2016, 28(5): 897–904.CrossRefGoogle Scholar
  13. [13]
    Menter F. R., Kuntz M., Bender R. A scale-adaptive simulation model for turbulent flow predictions [C]. AIAA 41rd Aerospace Science Meeting and Exhibit, Reno, Nevada, 2013.Google Scholar
  14. [14]
    Roy C. J., De Chant L. J., Payne J. L. et al. Bluff-body flow simulations using hybrid RANS/LES [C]. Conference: Proposed for presentation at the AIAA Summer Fluid Dynamics Meeting, Orlando, USA, 2003.Google Scholar
  15. [15]
    Barone M. F., Roy C. J. Evaluation of detached eddy simulation for turbulent wake applications [J]. AIAA Journal, 2006, 44(12): 3062–3071.CrossRefGoogle Scholar
  16. [16]
    Xu C. Y., Chen L. W., Lu X. Y. Large-eddy and detached-eddy simulations of the separated flow around a circular cylinder [J]. Journal of Hydrodynamics, 2007, 19(5): 559–563.CrossRefGoogle Scholar
  17. [17]
    Wei Q., Chen H. X., Ma Z. An hybrid RANS/LES model for simulation of complex turbulent flow [J]. Journal of Hydrodynamics, 2016, 28(5): 811–820.CrossRefGoogle Scholar
  18. [18]
    Menter F. R., Egorov Y. A scale-adaptive simulation model using two-equation models [C]. AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reston, USA, 2005.Google Scholar
  19. [19]
    Derakhshandeh J. F., Arjomandi M., Dally B. et al. The effect of arrangement of two circular cylinders on the maximum efficiency of Vortex-Induced Vibration power using a Scale-Adaptive Simulation model [J]. Journal of Fluids and Structures, 2014, 49(8): 654–666.CrossRefGoogle Scholar
  20. [20]
    Marchesse Y., Changenet C., Ville F. Numerical investigations on drag coefficient of balls in rolling element bearing [J]. Tribology Transactions, 2014, 57(5): 778–785.CrossRefGoogle Scholar
  21. [21]
    Menter F. R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model [C]. Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 2003.Google Scholar
  22. [22]
    Rotta J. C. Über eine methode zur berechnung turbulenter scherströmungsfelder [J]. Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1970, 50(1–4): 204–205.CrossRefGoogle Scholar
  23. [23]
    Menter F. R., Egorov Y. Revisiting the turbulent scale equation [C]. IUTAM Symposium on One Hundred Years of Boundary Layer Research: Proceedings of the IUTAM Symposium held at DLR-Göttingen, Göttingen, Germany, 2004.Google Scholar
  24. [24]
    Menter F. R., Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description [J]. Flow Turbulence and Combustion, 2010, 85(1): 113–138.CrossRefzbMATHGoogle Scholar
  25. [25]
    Fröhlich J., von Terzi D. Hybrid LES/RANS methods for the simulation of turbulent flows [J]. Progress in Aerospace Sciences, 2008, 44(5): 349–377.CrossRefGoogle Scholar
  26. [26]
    Davidson L. Evaluation of the SST-SAS model: Channel flow, asymmetric diffuser and axi-symmetric hill [C]. Proceedings of the European Conference on Computational Fluid Dynamics, Delft, The Netherlands, 2006.Google Scholar
  27. [27]
    Haase W., Braza M., Revell A. DESider-A European effort on Hybrid RANS-LES modelling: Results of the European-Union funded project, 2004–2007 [M]. Berlin Heidelberg, Germany: Springer Science and Business Media, 2009.Google Scholar
  28. [28]
    Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 2012, 32(8): 1598–1605.CrossRefGoogle Scholar
  29. [29]
    Egorov Y., Menter F. R. Development and application of SST-SAS turbulence model in the DESIDER project, in advances in hybrid RANS-LES modelling [M]. Berlin Heidelberg, Germany: Springer, 2008, 261–270.Google Scholar
  30. [30]
    Hunt J. C. R., Wray A., Moin P. Eddies, stream, and convergence zones in turbulent flows [R]. Center for Turbulence Research Report CTR-S88, Stanford, CA,USA, 1988, 193–208.Google Scholar

Copyright information

© China Ship Scientific Research Center 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical and Energy EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations