Journal of Bionic Engineering

, Volume 16, Issue 3, pp 410–422 | Cite as

Micro/nano-scale Characterization and Fatigue Fracture Resistance of Mechanoreceptor with Crack-shaped Slit Arrays in Scorpion

  • Kejun Wang
  • Junqiu Zhang
  • Yuqiang Fang
  • Daobing Chen
  • Linpeng Liu
  • Zhiwu HanEmail author
  • Luquan Ren


The nocturnal scorpion Heterometrus petersii uses Basitarsal Compound Slit Sensilla (BCSS) as mechanoreceptor to detect mechanical signal (e.g. substrate vibration, cyclic loads caused by walking) without fatigue failure such as initiation of fatigue crack and further propagation of crack-shaped slit. The outstanding perceptive function has been discovered for over half a century. However, it is not yet clear about the microstructure, material composition and micromechanical property which are all important factors that determine the fatigue fracture resistance of the BCSS. Here, the microscopic characteristics of the BCSS were thoroughly studied. The results indicate that anti-fatigue resilin and stiff chitinous cuticle form multilayered composite as the main body of the BCSS. Meanwhile, the pre-existing slit as mechanosensory structure is covered by cuticular membrane which has different mechanical property with the epicuticle. Theoretical analysis shows that the structure-composition-property synergistic relations of composites confer on the BCSS with extreme fatigue fracture tolerance.


slit-based mechanoreceptor materials characterization multilayered composite resilin fatigue fracture resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51835006, 51325501 and 51675220); the Program for JLU Science and Technology Innovative Research Team (Grant No. 2017TD-04); Interdisciplinary Research Funding program for doctoral of Jilin University (Grant No. 10183201827).

Supplementary material

Supplementary material, approximately 5.41 MB.


  1. [1]
    Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14, 23–36.CrossRefGoogle Scholar
  2. [2]
    Yang Y, Wu J, Zhu R, Li C, Yan S. The honeybee’s protrusible glossa is a compliant mechanism. Journal of Bionic Engineering, 2017, 14, 607–615.CrossRefGoogle Scholar
  3. [3]
    Han Z, Zhang J, Ge C, Wen L, Ren L. Erosion resistance of bionic functional surfaces inspired from desert scorpions. Langmuir, 2012, 28, 2914–2921.CrossRefGoogle Scholar
  4. [4]
    Goodwyn P P, Katsumata-Wada A, Okada K. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). Journal of Insect Physiology, 2009, 55, 855–861.CrossRefGoogle Scholar
  5. [5]
    Qian Z, Yang M, Zhou L, Liu J, Akhtar R, Liu C, Liu Y, Ren L, Ren L. Structure, mechanical properties and surface morphology of the snapping shrimp claw. Journal of Materials Science, 2018, 53, 10666–10678.CrossRefGoogle Scholar
  6. [6]
    Fratzl P, Barth F G. Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462, 442–448.CrossRefGoogle Scholar
  7. [7]
    Song H, Zhang J, Chen D, Wang K, Niu S, Han Z, Ren L. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale, 2017, 9, 1166–1173.CrossRefGoogle Scholar
  8. [8]
    Chen B, Yin D, Ye W, Lin S, Fan J, Gou J. Fiber-continuous panel-pillar structure in insect cuticle and biomimetic research. Materials & Design, 2015, 86, 686–691.CrossRefGoogle Scholar
  9. [9]
    Han Z, Mu Z, Li B, Wang Z, Zhang J, Niu S, Ren L. Active antifogging property of monolayer SiO2 film with bioinspired multiscale hierarchical pagoda structure. ACS Nano, 2016, 10, 8591–8602.CrossRefGoogle Scholar
  10. [10]
    Barth F G. A spider’s World: Senses and Behavior, 1st ed., Springer-Verlag, Berlin, Germany, 2002.CrossRefGoogle Scholar
  11. [11]
    Brownell P, Farley R D. Detection of vibration in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis. Journal of Comparative Physiology A, 1979, 131, 23–30.CrossRefGoogle Scholar
  12. [12]
    Brownell P H, van Hemmen J L. Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. American Zoologist, 2001, 41, 1229–1240.Google Scholar
  13. [13]
    Young S L, Chyasnavichyus M, Erko M, Barth F G, Fratzl P, Zlotnikov I, Politi Y, Tsukruk V V. A spider’s biological vibration filter: Micromechanical characteristics of a biomaterial surface. Acta Biomaterialia, 2014, 10, 4832–4842.CrossRefGoogle Scholar
  14. [14]
    Schaber C F, Gorb S N, Barth F G. Force transformation in spider strain sensors: White light interferometry. Journal of the Royal Society Interface, 2012, 9, 1254–1264.CrossRefGoogle Scholar
  15. [15]
    Young S L, Chyasnavichyus M, Barth F G, Ziotnikov I, Politi Y, Tsukruk V V. Micromechanical properties of strain-sensitive lyriform organs of a wandering spider (Cupiennius salei). Acta Biomaterialia, 2016, 41, 40–51.CrossRefGoogle Scholar
  16. [16]
    French A S, Torkkeli P H. Mechanotransduction in spider slit sensilla. Canadian Journal of Physiology and Pharmacology, 2004, 82, 541–548.CrossRefGoogle Scholar
  17. [17]
    Sangid M D. The physics of fatigue crack initiation. International Journal of Fatigue, 2013, 57, 58–72.CrossRefGoogle Scholar
  18. [18]
    Smith R A. Fatigue in transport: Problems, solutions and future threats. Process Safety and Environmental Protection, 1998, 76, 217–223.CrossRefGoogle Scholar
  19. [19]
    Lv J, Jiang Y, Zhang D. Structural and mechanical characterization of Atrina pectinata and freshwater mussel shells. Journal of Bionic Engineering, 2015, 12, 276–284.CrossRefGoogle Scholar
  20. [20]
    Han Z, Mu Z, Yin W, Li W, Niu S, Zhang J, Ren L. Biomimetic multifunctional surfaces inspired from animals. Advances in Colloid and Interface Science, 2016, 234, 27–50.CrossRefGoogle Scholar
  21. [21]
    Grunenfelder L K, Milliron G, Herrera S, Gallana I, Yaraghi N, Hughes N, Evans-Lutterodt K, Zavattieri P, Kisailus D. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Advanced Materials, 2018, 30, 1705295.CrossRefGoogle Scholar
  22. [22]
    Stürzl W, Kempter R, van Hemmen J L. Theory of arachnid prey localization. Physical Review Letters, 2000, 84, 5668–5671.CrossRefGoogle Scholar
  23. [23]
    Adams S V, Wennekers T, Bugmann G, Denham S, Culverhouse P F. Application of arachnid prey localisation theory for a robot sensorimotor controller. Neurocomputing, 2011, 74, 3335–3342.CrossRefGoogle Scholar
  24. [24]
    Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, 19, 3–20.CrossRefGoogle Scholar
  25. [25]
    Fakhrullina G, Akhatova F, Kibardina M, Fokin D, Fakhrullin R. Nanoscale imaging and characterization of Caenorhabditis elegans epicuticle using atomic force microscopy. Nanomedicine, 2017, 13, 483–491.CrossRefGoogle Scholar
  26. [26]
    Lfuku S, Yamada K, Morimoto M, Saimoto H. Nanofibrillation of dry chitin powder by star burst system. Journal of Nanomaterials, 2012, 2, 4545–4557.Google Scholar
  27. [27]
    Nagahama H, Higuchi T, Jayakumar R, Furuike T, Tamura H. XRD studies of β-chitin from squid pen with calcium solvent. International Journal of Biological Macromolecules, 2008, 42, 309–313.CrossRefGoogle Scholar
  28. [28]
    Andersen S O, Weis-Fogh T. Resilin. A rubberlike protein in arthropod cuticle. Advances in Insect Physiology, 1964, 2, 1–65.CrossRefGoogle Scholar
  29. [29]
    Michels J, Vogt J, Gorb S N. Tools for crushing diatoms — opal teeth in copepods feature a rubber-like bearing composed of resilin. Scientific Reports, 2012, 2, 465.CrossRefGoogle Scholar
  30. [30]
    Meyers M A, McKittrick J, Chen P Y. Structural biological materials: Critical mechanics-materials connections. Science, 2013, 339, 773–779.CrossRefGoogle Scholar
  31. [31]
    Carlsson L A, Adams D F, Pipes R B. Experimental Characterization of Advanced Composite Materials, 4th ed., Taylor & Francis, Boca Raton, USA, 2014.CrossRefzbMATHGoogle Scholar
  32. [32]
    Aizenberg J, Weaver J C, Thanawala M S, Sundar V C, Morse D E, Fratzl P. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science, 2005, 309, 275–278.CrossRefGoogle Scholar
  33. [33]
    Raabe D, Sachs C, Romano P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia, 2005, 53, 4281–4292.CrossRefGoogle Scholar
  34. [34]
    Fratzl P, Koledink O, Fischer F D, Dean M N. The mechanics of tessellations — Bioinspired strategies for fracture resistance. Chemical Society Reviews, 2016, 45, 252–267.CrossRefGoogle Scholar
  35. [35]
    Zechner J, Kolednik O. Paper multilayer with a fracture toughness of steel. Journal of Materials Science, 2013, 48, 5180–5187.CrossRefGoogle Scholar
  36. [36]
    Li X W, Ji H M, Yang W, Zhang G P, Chen D L. Mechanical properties of crossed-lamellar structures in biological shells: A review. Journal of the Mechanical Behavior of Biomedical Material, 2017, 74, 54–71.CrossRefGoogle Scholar
  37. [37]
    Ritchie R O. The conflicts between strength and toughness. Nature Materials, 2011, 10, 817–822.CrossRefGoogle Scholar
  38. [38]
    Su S C, Kim Y, Liu J C. Resilin: Protein-based elastomeric biomaterials. Acta Materialia, 2014, 10, 1601–1611.Google Scholar
  39. [39]
    Elvin C M, Carr A G, Huson M G, Maxwell J M, Pearson R D, Vuocolo T, Liyou N E, Wong D C C, Merritt D J, Dixon N E. Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005, 437, 999–1002.CrossRefGoogle Scholar
  40. [40]
    Bochicchio B, Pepe A, Tamburro A M. Investigating by CD the molecular mechanism of elasticity of elastomeric proteins. Chirality, 2008, 20, 985–994.CrossRefGoogle Scholar
  41. [41]
    Ardell D, Andersen S. Tentative identification of a resilin gene in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2001, 31, 965–970.CrossRefGoogle Scholar
  42. [42]
    Burrows M, Shaw S R, Sutton G P. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects. BMC Biology, 2008, 6, 41.CrossRefGoogle Scholar
  43. [43]
    Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. Elastic proteins: Biological roles and mechanical properties. Philosophical Transactions of the Royal Society B, 2002, 357, 121–132.CrossRefGoogle Scholar
  44. [44]
    Vincent J F V, Wegst U G. Design and mechanical properties of insect cuticle. Arthropod Structure & Development, 2004, 33, 187–199.CrossRefGoogle Scholar
  45. [45]
    Yang W, Chen I H, Gludovatz B, Zimmermann E A, Ritchie R O, Meyers M A. Natural flexible dermal armor. Advanced Materials, 2013, 25, 31–48.CrossRefGoogle Scholar
  46. [46]
    Yahyazadehfar M, Arola D. The role of organic proteins on the crack growth resistance of human enamel. Acta Biomaterialia, 2015, 19, 33–45.CrossRefGoogle Scholar
  47. [47]
    Launey M E, Ritchie R O. On the Fracture toughness of advanced materials. Advanced Materials, 2009, 21, 2103–2110.CrossRefGoogle Scholar

Copyright information

© Jilin University 2019

Authors and Affiliations

  • Kejun Wang
    • 1
  • Junqiu Zhang
    • 1
  • Yuqiang Fang
    • 2
  • Daobing Chen
    • 1
  • Linpeng Liu
    • 1
  • Zhiwu Han
    • 1
    Email author
  • Luquan Ren
    • 1
  1. 1.Key Laboratory for Bionic Engineering, Ministry of EducationJilin UniversityChangchunChina
  2. 2.School of Mechanical and Aerospace EngineeringJilin UniversityChangchunChina

Personalised recommendations