Journal of Bionic Engineering

, Volume 16, Issue 2, pp 281–290 | Cite as

When Lotus Leaves Prevent Metal from Melting — Biomimetic Surfaces for High Temperature Applications

  • Wilfried KonradEmail author
  • Jörg Adam
  • Siegfried Konietzko
  • Christoph Neinhuis


Functional properties of biological surfaces have gained increasing interest in the last two decades, especially with regard to wetting and self-cleaning. Here, biological surfaces of arthropods (Collembola) and plants (sacred Lotus) served as models for the principle design of high temperature resistant surfaces used in blast furnaces to prevent tuyeres from melting. Tuyeres are double-walled, watercooled pipes supplying the blast furnace with hot air to keep the reduction and melting process running. Tuyere failure is mainly caused by melting of the wall after direct contact with liquid iron, resulting in the partial shut down of the blast furnace and huge energy losses. As a new approach to avoid tuyere failure we developed a new type of tuyere surface with (i) defined cone shaped indentations and (ii) a heat resistant zirconium/corundum coating with “ferrophobic” properties i.e. it forms with liquid iron of 1500 °C a contact angle exceeding 130°. Theoretical considerations indicate that liquid iron infiltrates these indentations only partially if this contact angle and the aperture angle of the cone satisfy an inequality condition. Since heat conductivity of the remaining gas trapped inside the cones is by five orders of magnitude lower than in copper, the overall heat flow into the tuyere is substantially reduced and the outer walls are much less prone to melting.


tuyere blast furnace biomimetics liquid iron heat flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge funding of the German Federal Ministry for Economic Affairs and Energy (Grant No. 03ET11449 A/B/C).

Supplementary material

Supplementary material, approximately 228 KB.

Supplementary material, approximately 228 KB.


  1. [1]
    Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1–8.CrossRefGoogle Scholar
  2. [2]
    Ragesh P, Ganesh V A, Nair S V, Nair A S. A review on ‘self-cleaning and multifunctional materials’. Journal of Materials Chemistry A, 2014, 2, 14773–14797.CrossRefGoogle Scholar
  3. [3]
    Yan Y Y, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science, 2011, 169, 80–105.CrossRefGoogle Scholar
  4. [4]
    Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 2011, 56, 1–108.CrossRefGoogle Scholar
  5. [5]
    Helbig R, Nickerl J, Neinhuis C, Werner C. Smart skin patterns protect springtails. PLOS ONE, 2011, 6, e25105.CrossRefGoogle Scholar
  6. [6]
    Hensel R, Neinhuis C, Werner C. The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 2016, 45, 323–341.CrossRefGoogle Scholar
  7. [7]
    Rakitov R, Gorb S N. Brochosomes protect leafhoppers (Insecta, Hemiptera, Cicadellidae) from sticky exudates. Journal of the Royal Society Interface, 2013, 10, 20130445.CrossRefGoogle Scholar
  8. [8]
    Wagner T, Neinhuis C, Barthlott W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica, 1996, 77, 213–225.CrossRefGoogle Scholar
  9. [9]
    Quéré D. Wetting and roughness. Annual Review of Materials Research, 2008, 38, 71–99.CrossRefGoogle Scholar
  10. [10]
    Tuteja A, Choi W, Ma M, Mabry J M, Mazzella S A, Rutledge G C, McKinley G H, Cohen R E. Designing superoleophobic surfaces. Science, 2007, 318, 1618–1622.CrossRefGoogle Scholar
  11. [11]
    Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477, 443–447.CrossRefGoogle Scholar
  12. [12]
    Men X H, Zhang Z Z, Yang J, Wang K, Jiang W. Superhydrophobic/superhydrophilic surfaces from a carbon nanotube based composite coating. Applied Physics A, 2010, 98, 275–280.CrossRefGoogle Scholar
  13. [13]
    Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces: An inspiration for biomimetic materials. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2009, 367, 1487–1509.CrossRefGoogle Scholar
  14. [14]
    Zhang S, Huang J, Cheng Y, Yang H, Chen Z, Lai Y. Bioinspired surfaces with superwettability for anti-icing and ice-phobic application: Concept, mechanism, and design. Small, 2017, 13, UNSP 1701867.CrossRefGoogle Scholar
  15. [15]
    Cramb A W, Jimbo I. Calculation of the interfacial properties of liquid steelslag systems. Steel Research, 1989, 60, 157–165.CrossRefGoogle Scholar
  16. [16]
    Chung Y, Yoon T H, Lee K. Initial wetting and spreading phenomena of slags on refractory ceramics. In: Reddy R G, Chaubal P, Pistorius P C, Pal U, eds., Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, Springer, Seattle, USA, 2016, 573–580.CrossRefGoogle Scholar
  17. [17]
    Adam J, Kordel T, Johnen A, Kannappel M, Thaler C, Kerschbaum M, Rittenschober C, Moger R, Titz I. Investigations of measures for extension of BF tuyere life time (EXTUL). Technical Report, European Commission — Research Fund for Coal and Steel, 2015.Google Scholar
  18. [18]
    Preiss T. Chemisch-physikalische Untersuchungen zum Schadensmechanismus an Hochofenblasformen. Papierflieger, Clausthal-Zellerfeld, 2008. (in German)Google Scholar
  19. [19]
    Portnov L V, Nikitin L D, Bugaev S F, Shchipitsyn V G. Improving the durability of blast-furnace tuyeres. Metallurgist, 2014, 58, 488–491.CrossRefGoogle Scholar
  20. [20]
    Farkas O, Móger R. Metallographic aspects of blast furnace tuyere erosion processes. Steel Research International, 2013, 84, 1171–1178.CrossRefGoogle Scholar
  21. [21]
    Vuckovic N, Preiß T, Beusse R, Masimov M, Stišovic T, Pethke J, Adam A, Spitzer K H. Energieeinsparung durch Verbesserung der Zuverlässigkeit und Standzeit von Hochofenblasformen: Schlussbericht zum gleichnamigen Forschungsvorhaben; Berichtszeitraum 1.11.2004–31.10.2007. Technical Report, Federal Ministry for Economic Affairs and Energy, Berlin, Germany, 2008. (in German)Google Scholar
  22. [22]
    Yang D Z, Yong G, Zhang Y, Jing L, Hu J G, Li W Z. Application of ceramic coat synthesized by in-situ combustion synthesis to BF Tuyere. Journal of Iron and Steel Research International, 2007, 14, 70–72.CrossRefGoogle Scholar
  23. [23]
    Radyuk A, Titlyanov A, Yakoev A. Strengthening blastfurnace tuyeres by gas-thermal spraying. Steel in Translation, 2002, 32, 13–15.Google Scholar
  24. [24]
    Dalley A M. Protective coatings for copper blast furnace tuyeres. Proceedings of the 60th Ironmaking Conference, Baltimore, USA, 2001, 253–259.Google Scholar
  25. [25]
    Zainullin L A, Epishin A Y, Spirin N A. Extending the life of blast-furnace air tuyeres. Metallurgist, 2018, 62, 322–325.CrossRefGoogle Scholar
  26. [26]
    Radyuk A G, Titlyanov A E, Skripalenko M M, Stoishich S S. Modeling of the temperature field of air tuyeres in the blast furnaces with thermal insulation of the nose portion. Metallurgist, 2018, 62, 310–313.CrossRefGoogle Scholar
  27. [27]
    Wang H, Zhang J, Liu Z, Wang G, Jiao K, Liu D, Yan X, Yang T. Damage mechanism of blast furnace tuyere by zinc. Ironmaking & Steelmaking, 2018, 45, 560–565.CrossRefGoogle Scholar
  28. [28]
    Radyuk A G, Titlyanov A E, Sidorova T Y. Thermal state of air tuyeres in blast furnaces. Steel in Translation, 2016, 46, 624–628.CrossRefGoogle Scholar
  29. [29]
    Tiwari M, Kundu S, Padmapal, Mukhopadhyay K, Kumar N, Dube S. Tuyere burning in blast furnaces, phenomena understanding and measures to control. Proceedings of AISTech 2018, Iron and Steel Technology Conference and Exhibition, Pittsburgh, USA, 2018, 589–594.Google Scholar
  30. [30]
    Ward N, Klaas M, D’Alessio J, Badgley P. Blast furnace process monitoring and control through the use of tuyere camera technology. Proceedings of AISTech 2017, Iron and Steel Technology Conference and Exhibition, Nashville, USA, 2017, 779–785.Google Scholar
  31. [31]
    Young T. III. An essay on the cohesion of fluids. Philosophical Transactions of the rRoyal Society of London, 1805, 95, 65–87.CrossRefGoogle Scholar
  32. [32]
    Shen F Y, Liu W J, G R F, Huo H. A careful physical analysis of gas bubble dynamics in xylem. Journal of Theoretical Biology, 2003, 225, 229–233.CrossRefGoogle Scholar
  33. [33]
    Konrad W, Roth-Nebelsick A. The significance of pit shape for hydraulic isolation of embolized conduits of vascular plants during novel refilling. Journal of Biological Physics, 2005, 31, 57–71.CrossRefGoogle Scholar
  34. [34]
    Adamson A W, Gast A P. Physical Chemistry of Surfaces, Wiley-Interscience, Hoboken, USA, 1997.Google Scholar

Copyright information

© Jilin University 2019

Authors and Affiliations

  • Wilfried Konrad
    • 1
    Email author
  • Jörg Adam
    • 2
  • Siegfried Konietzko
    • 3
    • 4
  • Christoph Neinhuis
    • 1
  1. 1.Technical University of DresdenInstitute of BotanyDresdenGermany
  2. 2.VDEh-Betriebsforschungsinstitut GmbHDüsseldorfGermany
  3. 3.Lebronze Alloys Germany — Hundt & Weber GmbHSiegenGermany
  4. 4.CON-REA, Consulting & RealizationDuisburgGermany

Personalised recommendations