Advertisement

Summary bipartite networks: trees in Romanian forests – wood pathogenic and sapro-pathogenic fungi

  • Ecaterina FodorEmail author
Original Article
  • 1 Downloads

Abstract

The assembly of plant pathogenic communities is one of the central topics in community ecology. Based on collected metadata, a summary host-pathogen bipartite network was constructed, and network metrics such as connectance, node degree distribution, nestedness and modularity were employed to verify the non-random nature of host-pathogen interactions. The selected hosts (Quercus robur, Q. cerris, Q. frainetto, Q. pubescens, Q. petraea, Fagus sylvatica and Picea abies) are tree species characteristic for European forest ecosystems, covering large areas of Central and South-Eastern Europe including Romania. The selected tree species (based on their dominance in forest ecosystems) establish 109 forest ecosystem types in Romanian forest ecosystems’ typology. 105 species of wood pathogens and sapro-pathogens, covering whole area of Europe, were retrieved from published papers. The established bipartite network of wood pathogens and sapro-pathogens and their tree hosts was significantly modular, displaying four modules (Qnetwork = 0.24) and significantly nested (Nnetwork = 0.67), presented power law degree distribution, a common topology with mutualistic networks. Network topological characteristics generally encountered in parasitic networks described in literature, confirm the non-random assembly of the wood and bark pathogenic communities. Non-metric Multidimensional Scaling (NMDS) performed on wood pathogens ‘matrix and forest types’ matrix showed high resemblance in the positioning pattern of trees in ordination space. Mantel test confirmed the NMDS result - a significant correlation between similarities in pathogen share and similarities in tree composition of the forest ecosystems in Romanian forest classification. The network architecture resembles other published networks depicting symbiotic interactions. As tree species assemble in distinct forest types, the transmission of emerging or invasive pathogens is expected to continue in the future due to modular nature of the networks, triggered by major climatic changes.

Keywords

Summary bipartite networks Wood and bark pathogens Node degree distribution Connectance Modularity 

Notes

Supplementary material

42161_2019_386_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 33 kb)
42161_2019_386_MOESM2_ESM.docx (32 kb)
ESM 2 (DOCX 32 kb)

References

  1. Abrego N, Garcia-Baquero G, Halme P, Ovaskainen O, Salcedo J (2014) Community turnover of wood-inhabiting fungi across hierarchical spatial scales. PLoS One 9(7):e103416.  https://doi.org/10.1371/journal.pone.0103416 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adamson MI, Caira JN (1994) Evolutionary factors influencing the nature of parasitic specificity. Parasitology 109:885–895CrossRefGoogle Scholar
  3. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefGoogle Scholar
  4. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406:378–482.  https://doi.org/10.1038/35019019 CrossRefPubMedGoogle Scholar
  5. Alcántara JM, Garrido JL, Rey PJ (2019) Plant species abundance and phylogeny explain the structure of recruitment networks. New Phytol.  https://doi.org/10.1111/nph.15774
  6. Almeida-Neto M, Guimarães P, Guimarães PR, Lodola RD, Ulrich W (2008) A consistent metric for Nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8):1227–1239CrossRefGoogle Scholar
  7. Annesi T, D’Amico B, Motta E, Mazza G (2010) Characterization of Italian isolates of Inonotus rickii. Phytopathol Mediterr 49:301–308Google Scholar
  8. Anonimous (2013) National Forests Inventory (Romania) 2002–2012. http://www.roifn.ro. Accessed 05/04/2019
  9. Atmar W, Patterson B (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373–382CrossRefPubMedGoogle Scholar
  10. Barabási A-L (2013) Network science. Phil Trans R Soc A 371:20120375.  https://doi.org/10.1098/rsta.2012.0375 CrossRefPubMedGoogle Scholar
  11. Barabási A-L (2016) Network science. Cambridge University PressGoogle Scholar
  12. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512CrossRefPubMedGoogle Scholar
  13. Barber MJ (2007a) Modularity and community detection in bipartite networks. Phys Rev E 76:066102CrossRefGoogle Scholar
  14. Barber MJ (2007b) Modularity and community detection in bipartite networks. Phys Rev E76:066102Google Scholar
  15. Bascompte J, Jordano CJ, Melian JM, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bellay S, Almeida-Neto M, Takemoto RM, Luque JL (2015) The patterns of organization and structure of interactions in a fish-parasite network of a neotropical river. Int J Parasitol 45:549–557CrossRefPubMedGoogle Scholar
  17. Berry FH (1973) Heart rots of central region hardwoods. Forest Pest Leaflet 149. U.S. Department of Agriculture. Forest ServiceGoogle Scholar
  18. Blick R, Burns K (2009) Network properties of arboreal plants. Are epiphyte, mistletoes and lianas structured similarly? Perspect Plant Ecol Evol Syst 11:41–52CrossRefGoogle Scholar
  19. Blüthgen N, Fründ J, Vásquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits? Ecology 89(21):3367–3399Google Scholar
  20. Borg J, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer Verlag, New YorkGoogle Scholar
  21. Burns KC (2007) Network properties of an epiphyte metacommunity. Journal of Ecology 95:1142–1151.  https://doi.org/10.1111/j.1365-2745.2007.91267.x
  22. Bussotti F, Ferretti M (1998) Air pollution, forest condition and forest decline in southern Europe: an overview. Environ Pollut 101:49–65CrossRefPubMedGoogle Scholar
  23. Cagnolo L, Salvo A, Valladares G (2011) Network topology patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J Anim Ecol 80(2):342–351CrossRefPubMedGoogle Scholar
  24. Cenci S, Song C, Saavedra S (2018) Rethinking the importance of the structure of ecological network under an environment-dependent framework. Ecol Evol 8:6852–6859.  https://doi.org/10.1002/ece3.4252 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chagnon J-L, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold EA (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at continental scale. Oecologia 180:181–191CrossRefPubMedGoogle Scholar
  26. Clune J, Mouret JB, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B 280:20122863.  https://doi.org/10.1098/rspb.2012.2863 CrossRefPubMedGoogle Scholar
  27. Cooke RC, Whipp JM (1980) The evolution of modes of nutrition in fungi parasitic on terrestrial plants. Biol Rev 55(3):341–362CrossRefGoogle Scholar
  28. Curtu L, Moldovean C, Enescu CM, Crăciunescu I, Sofletea N (2011) Genetic differentiation between Quercus frainetto ten. And Quercus pubescens Willd. In Romania. Not Bot Hort Agrobot Cluj 29(1):275–282CrossRefGoogle Scholar
  29. Delmas E, Besson M, Brice M-H, Burkle L, Dalla Rive GV, Fortin M-J, Gravel D, Guimarães PR Jr, Hembry DH, Newman E, Olesen JM, Pres MM, Yeakel JD, Poisot T (2017) Analyzing ecological networks of species interactions. bioRxiv112540  https://doi.org/10.1101/112540
  30. Desprez-Lousteau ML, Marçais B, Nageleisen LM, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612CrossRefGoogle Scholar
  31. Donatti CJ, Guimarães PR, Galetti M, Pizo MA, Marquitti FMD, Dirzo R (2011) Analysis of hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781CrossRefPubMedGoogle Scholar
  32. Doniţă N, Chiriţă C, Stănescu V (1990) Tipuri de ecosisteme forestiere din România. Ed. Tehnică Agricola, BucureștiGoogle Scholar
  33. Doniţă N, Popescu A, Paucă-Comanescu M, Mihăilescu S, Biriş IA, (2005) Habitatele din România. Ed. Silvică, BucureștiGoogle Scholar
  34. Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analyzing ecological networks. R News 8(2):8–11Google Scholar
  35. Dormann CF, Fruend J, Bluethgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24CrossRefGoogle Scholar
  36. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thébault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538CrossRefPubMedGoogle Scholar
  37. Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. PNAS 99(20):12917–12922.  https://doi.org/10.1073/pnas.192407699 CrossRefPubMedGoogle Scholar
  38. Eaton E, Caudullo G, Oliveira S, de Rigo D (2016) Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. e01c6dfGoogle Scholar
  39. EEA (2006) European forest types. Categories and types for sustainable forest management reporting and policy. European Environment agency, EEA technical report 009Google Scholar
  40. Ennos RA (2015) Resilience of the forest pathogens: an evolutionary ecology perspective. Forestry 88:41–52CrossRefGoogle Scholar
  41. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS (2011) Statistical structure of host-phage interaction. PNAS 108(29):E288–E297CrossRefPubMedGoogle Scholar
  42. Fodor E (2013) Linking biodiversity to mutualistic networks-woody species and ectomycorrhizal fungi. Ann For Res 56(1):53–78Google Scholar
  43. Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 78:811–817.  https://doi.org/10.1111/j.1365-2656.2010.01688.x CrossRefGoogle Scholar
  44. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23.  https://doi.org/10.1146/annurev-ecolsys-11411-160340 CrossRefGoogle Scholar
  45. Fukami T, Dickie IA, Wilkie JP et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684.  https://doi.org/10.1111/j.1461-0248.2010.01465.x CrossRefPubMedGoogle Scholar
  46. Gandon S, Buckling A, Decaestecker E, Day T (2008) Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol 21(6):1891–1866CrossRefGoogle Scholar
  47. Genini J, Côrtes MC, Guimarães PR, Galetti M (2012) Mistletoes play different roles in a modular host – parasite network. Biotropica 44:171–178CrossRefGoogle Scholar
  48. Giraud T, Gladieux P, Gavrilets S (2010) Linking the emergence of fungal plant diseases with ecological speciation. TREE 25(7):387–395PubMedGoogle Scholar
  49. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99(12):7821–7826CrossRefPubMedGoogle Scholar
  50. Götzenberger L, de Bello F, Bråthen KA, Davison J, Dubuis A, Guisan A, Lepš AJ, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K (2011) Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol Rev 87:11–127.  https://doi.org/10.1111/j.1469-185X.2011.00187.x CrossRefGoogle Scholar
  51. Graham SP, Hassan HK, Burkett-Cadena ND, Guyer C, Unnasch TR (2009) Nestedness of ectoparasite-vertebrate host networks. PLoS One 4(11):e7873.  https://doi.org/10.1371/journal.pone.0007873 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Griffith EC, Pedersen AB, Fenton A, Petchey OL (2014) Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc Biol Sci 281:20132286.  https://doi.org/10.1098/rspb.2013.2286 CrossRefGoogle Scholar
  53. Guimarães PRJ, Guimarães P (2006) Improving the analyses of Nestedness for large sets of matrices. Environ Model Softw 21(10):1512–1513CrossRefGoogle Scholar
  54. Guimarães PR Jr, Rico-Gray V, dos Reis SF, Thompson JN (2006) Asymmetries in specialization in ant–plant mutualistic networks. Proc R Soc B Biol Sci 273:2041–2047CrossRefGoogle Scholar
  55. Guimarães PR Jr, Sazima C, Furtado dos Reis S, Sazima I (2007) The nested structure of marine cleaning symbiosis: it is like flowers and bees? Biol Lett 3(1):51–54CrossRefPubMedGoogle Scholar
  56. Guimarães PR, Rico-Gray V, Oliveira PS, Izzo TJ, dos Reis SF, Thompson JN (2007) Interaction intimacy affects structure and co-evolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803CrossRefPubMedGoogle Scholar
  57. Guimerá R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900CrossRefPubMedPubMedCentralGoogle Scholar
  58. Guimerà R, Sales-Pardo M, Amaral LAN (2004) Modularity from fluctuations in random graphs and complex networks. Phys Rev E 70:025101.  https://doi.org/10.1103/PhysRevE.70025101 CrossRefGoogle Scholar
  59. Gulbahce N, Lehmann S (2008) The art of community detection. BioEssays 30(10):934–938CrossRefPubMedGoogle Scholar
  60. Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, Hochberg ME (2017) Network structure and local adaptation in co-evolving bacteria-phage interaction. Mol Ecol 26(7):1764–1777CrossRefPubMedGoogle Scholar
  61. Hammer Ø, Harper DT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontologia electronica: http://palaeo-electronica.Org. Accessed 05/04/2019
  62. Harris MO, Stuart JJ, Mohan M, Nair S, Lamb RJ, Rohfritsch O (2003) Grasses and gall midges: plant defense and insect adaptation. Annu Rev Entomol 48:549–577CrossRefPubMedGoogle Scholar
  63. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52.  https://doi.org/10.1038/35011540 CrossRefPubMedGoogle Scholar
  64. Hespenheide HA (1991) Bionomics of leaf-mining insects. Annu Rev Entomol 36:535–560CrossRefGoogle Scholar
  65. Hiscox J, O’Leary J, Boddy L (2018) Fungus wars: basidiomycetes battles in wood decay. Stud Mycol 89:117–124.  https://doi.org/10.1016/j.simyco.2018.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Intini M, Tello ML (2003) Investigaciones sobre hongos xilófagos de árboles urbanos en Europa: primera cita de Inonotus rickii (Pa.) Reid en España. Boletin de Sanidad Vegetal. Plagas 29:277–279Google Scholar
  67. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69(3):373–386CrossRefGoogle Scholar
  68. Jordano P (2010) Coevolution in multispecific interactions among free-living species. Evol Edu Outreach 3:40–46CrossRefGoogle Scholar
  69. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in co-evolutionary networks of plant-animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  70. Jung T (2009) Beech decline in Central Europe driven by the interaction between Phytophthora infections and climatic extremes. For Pathol 39:73–94CrossRefGoogle Scholar
  71. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–165CrossRefGoogle Scholar
  72. Kenkel NC, Orlóci L (1986) Applying metric and non-metric multidimensional scaling to ecological studies: some new results. Ecology 67(4):919–928CrossRefGoogle Scholar
  73. Kharuk V, Im TS, Dvinskaya ML, Golukov AS, Ranson KJ (2015) Climate induced mortality of spruce stands in Belarus. Environ Res Lett 10:125006 http://iopscience.iop.org/1748-9326/10/12/125006. Accessed 05/04/2019
  74. Kitano H (2002) Systems biology: a brief overview. Nature 295:1662–1664Google Scholar
  75. Kondoh M, Kato S, Sakato Y (2010) Food webs are built up with nested subwebs. Ecology 91:3123–3130CrossRefPubMedGoogle Scholar
  76. Landi P, Minoarivelo HD, Brännström Å, Hui C, Dieckmann U (2018) Complexity and stability of ecological networks: a review of the theory. Popul Ecol 60:319–345.  https://doi.org/10.1007/s10144-018-0428-3 CrossRefGoogle Scholar
  77. Lessard JP, BelmakerJ MJA, Chase JM, Rahbek C (2012) Inferring local ecological processes amid species pool influences. Trends Ecol Evol 27:600–607.  https://doi.org/10.5061/dryad.t897q CrossRefPubMedGoogle Scholar
  78. Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Annu Rev Ecol Syst 36:597–620CrossRefGoogle Scholar
  79. Lipson H, Pollack JB, Suh NP (2002) On the origin of modular variation. Evolution (NY) 56:1549–1556.  https://doi.org/10.1111/j.0014-3820.2002.tb01466.x CrossRefGoogle Scholar
  80. May RM (1972) Stability and complexity in model ecosystems. Princeton University Press, PrincetonGoogle Scholar
  81. Mello MAR, Marquitti FMD, Guimarães PR Jr, Kalko EKV, Jordano P, de Aguiar MAM (2011) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6(2):e17395CrossRefPubMedPubMedCentralGoogle Scholar
  82. Montesinos-Navarro A, Segarro-Moragues JG, Valiente-Banuet A, Verdú M (2012) The network structure of plant-arbuscular mycorrhizal fungi. New Phytol 194(2):536–547CrossRefPubMedGoogle Scholar
  83. Muller-Landau H.C.2014 Plant diversity rooted in pathogens. Nature 506(7436)  https://doi.org/10.1039/nature.12.851
  84. Newman ME (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  85. Nguyen D, Castagneyrol B, Bruelheide H, Bussotti F, Guyat V, Jactel H, Jaroszewicz B, Valladares F, Stenlid J, Boberg J (2016) Fungal disease incidence along tree diversity gradients depends on latitude in European forests. Ecol Evol 6(8):2426–2438CrossRefPubMedPubMedCentralGoogle Scholar
  86. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package, R packageGoogle Scholar
  87. Olesen JM, Eskildsen LI, Venkatasamy S (2002) Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers Distrib 8:181–192CrossRefGoogle Scholar
  88. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. PNAS 104(50):19891–19896CrossRefPubMedGoogle Scholar
  89. Olesen JM, Bascompte J, Elberling H, Jordano P (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582CrossRefPubMedGoogle Scholar
  90. Pascual-Garcia A, Tamames J, Bastolla U (2014) Bacteria dialog with Santa Rosalia: are aggregations of cosmopolitan bacteria mainly explained by habitat filtering or by ecological interactions? BMC Microbiol 14:284. http://www.biomedcentral.Com/1471-2180/14/284. Accessed 05/04/2019
  91. Petanidou T, Potts SG (2006) In: Waser NM, Ollerton J (eds) Mutual use of resources in Mediterranean plant–pollinator communities: how specialized are pollination webs? Plant pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 220–244Google Scholar
  92. Petanidou T, Kallimanis AS, Tzanopoulos J, Sgardelis SP, Pantis JD (2008) Long-term observations of a pollinator network: fluctuation in species and interactions for estimates of specialization. Ecology Letters 11:564–575.  https://doi.org/10.1111/j.1461-0248.2008.01170.x
  93. Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D (2017) Advances on plant-pathogen interactions from molecular toward systems biology perspectives. Plant J 90:720–737CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pires MM, Guimarães PR Jr (2012) Interaction intimacy organizes networks of antagonistic interactions in different ways. J R Soc Interface.  https://doi.org/10.1098/rsif.2012.0649
  95. Poisot T, Gravel D (2014) When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2:e251.  https://doi.org/10.7717/peerj.251 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Poisot T, Lepennetier G, Martinez E, Ramsayer J, Hochberg M (2011) Resource availability affects the structure of natural bacteria-bacteriophage community. Biol Lett 7:201–204CrossRefPubMedGoogle Scholar
  97. Poisot T, Stanko M, Miklisova D, Morand S (2013) Facultative and obligate parasite communities exhibit different network properties. Parasitology 140(11):1340–1345CrossRefPubMedGoogle Scholar
  98. Ponisio LC, Valdovinos FS, Allhoff KT, Gaiarsa MP, Barner A, Guimarães PR Jr, Hembry DH, Morrison B, Gillespie R (2019) A network perspective for community assembly. Front Ecol Evol 7:103.  https://doi.org/10.3389/fevo.2019.00103 CrossRefGoogle Scholar
  99. Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, Mc Spadden Gardener BB, Kinkel LL, Garrett KA (2016) Microbiome networks: a system framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096CrossRefPubMedGoogle Scholar
  100. Poulin R (2010) Network analysis shining light on parasite ecology and diversity. Trends Parasitol 26:492–498CrossRefPubMedGoogle Scholar
  101. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna URL http://www.R-project.org/. Accessed 05/04/2019
  102. Ramos-Jiliberto R, Domínguez D, Espinoza C, López G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecological Complexity 7:86–90. DOI:  https://doi.org/10.1016/j.ecoccom.2009.06.001
  103. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555CrossRefPubMedGoogle Scholar
  104. Rodríguez-Gironés MA, Santamaría L (2006) A new algorithm to calculate the nestedness temperature of presence-absence matrices. J Biogeogr 33:924–935CrossRefGoogle Scholar
  105. Sachs JL, Essenberg CJ, Turcotte MM (2011) New paradigms for the evolution of beneficial infections. Trends Ecol Evol 26:202–209CrossRefPubMedGoogle Scholar
  106. Schlosser G, Wagner GP (2004) Modularity in development and evolution. Chicago U. PressGoogle Scholar
  107. Scotti M, Podani J, Jordán F (2007) Weighting, scale dependence and indirect effects in ecological networks: a comparative study. Ecol Complex 4:148–159CrossRefGoogle Scholar
  108. Shepard RN (1966) Metric structures in ordinal data. J Math Psychol 3:287–315CrossRefGoogle Scholar
  109. Strogatz SH (2001) Exploring complex networks. Nature 410:268–267CrossRefPubMedGoogle Scholar
  110. Strona G, Fattorini S (2014) NeD – Nestedness for dummies. URL http://purl.oclc.Org/ned. Accessed 05/04/2019
  111. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856CrossRefPubMedGoogle Scholar
  112. Thergart T, Schmitz U, Landan G, Martin WF, Dagan T (2014) Application and comparative performance of network modularity algorithm to ecological communities’ classification. Acta Soc Bot Pol 83(2):93–102CrossRefGoogle Scholar
  113. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  114. Thrall PH, Burdon JJ (2002) Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathol 51:169–184CrossRefGoogle Scholar
  115. Traveset A, Heleno R, Chamorro S, Vargas P, McMullen CK, Castro-Urgal R, Nogales M, Herrera HW, Olesen JM (2013) Invaders of pollination networks in Galapagos Islands: emergence of metacommunities. Proc.R.Soc.B 280(1758).  https://doi.org/10.2098/rspb.2012.2040
  116. Ulrich W, Gotelli NJ (2007) Disentangling community patterns of nestedness and species co-occurrence. OIKOS 116:2053–2061CrossRefGoogle Scholar
  117. Ulrich W, Almeida-Neto M, Gotelli NJ (2009) A consumers’ guide to nestedness analysis. Oikos 118:3–18CrossRefGoogle Scholar
  118. Vacher C, Piou D, Desprez-Loustau M-L (2008) Architecture of an antagonistic tree/fungus network: the asymmetric influence of Past evolutionary history. PLoS One 3(3):e1740.  https://doi.org/10.1371/journal.pone.0001740 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Valdovinos FS, Ramos-Jiliberto R, Flores JD, Espinoza C, López G (2009) Structure and dynamics of pollination networks: the role of alien plants. OIKOS 118:1190–1200CrossRefGoogle Scholar
  120. Valdovinos FS, Brosi BJ, Briggs HM, Moisset de Espanés P, Ramos JR, Martinez ND (2016) Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol Lett 19:1277–1286.  https://doi.org/10.1111/ele.12664 CrossRefPubMedGoogle Scholar
  121. Wang Q, Fleury E (2013) Overlapping community structure and modular overlaps in complex networks. In Öxier T et al (eds.) Mining Social Networks and Security Informatics. Lecture notes in social networks. Springer Science + Business Media: 15–40Google Scholar
  122. Warren CP, Pascual M, Lafferty KD, Kuris AM (2010) The inverse niche model for food webs with parasites. Theor Ecol 3:285–294CrossRefPubMedPubMedCentralGoogle Scholar
  123. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:409–410CrossRefGoogle Scholar
  124. Williams RJ (2011) Biology, methodology or chance? The degree distributions of bipartite ecological networks. PLoS One 6(3):e17645.  https://doi.org/10.1371/journal.pone.0017645 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2019

Authors and Affiliations

  1. 1.Faculty of Environmental Protection, Department of Forestry and Forest EngineeringUniversity of OradeaOradea, Bihor CountyRomania

Personalised recommendations