Advertisement

Journal of Plant Pathology

, Volume 101, Issue 4, pp 897–906 | Cite as

Understanding components of the grapevine leaf spot monocycle and comparing resistance of Vitis labrusca cultivars

  • Eliane Aparecida Rogovski-Czaja
  • Rafaele Regina Moreira
  • Cristiano Nunes Nesi
  • Henrique da Silva Silveira Duarte
  • Louise Larissa May De MioEmail author
Original Article
  • 10 Downloads

Abstract

Grapevine leaf spot caused by Pseudocercospora vitis is important at the end of the vegetative cycle of Vitis labrusca and its hybrids, but studies on this pathosystem and its monocyclic components are scarce. The objective of this work was to determine the favorable conditions for the development of the pathogen and to study the resistance levels in 10 grapevine cultivars. The germination of P. vitis conidia was evaluated at temperatures from 4 to 35 °C, germ tube size from 8 to 33 °C and weight of colonies of the pathogen from 10 to 40 °C. Wetness periods of 3 to 48 h were also evaluated for germination at temperatures from 10 to 40 °C. In five cultivars of V. labrusca and five hybrids inoculated with P. vitis, the incubation period and the progression of disease severity under controlled conditions were compared. The optimal temperature for germination of P. vitis was at 28 °C and 27 °C for germ tube growth. For mycelial weight the optimum temperature was 26.4 °C. The highest germination of the pathogen occurred with wetness of 45.5 h and temperature of 29.6 °C. The incubation period in the cultivars ranged from 26 to 51 days. The disease progress curve showed differences among cultivars tested, ‘Concord’ and ‘BRS Vitória’ being the most resistant. In plants inoculated at 25 °C, the number of lesions increased over time, stabilizing at 42–47 days after inoculation and from here no new lesions appeared, only lesions expansion was observed.

Keywords

Conidial germination Incubation period Latent period Viticulture 

Notes

Acknowledgements

The authors would like to thank the ‘Federal University of Parana (UFPR)’, as well as the ‘Coordination of Improvement of Higher Education Personnel (CAPES)’, for their support and provision of resources necessary for our research.

References

  1. Aguiar RL, Scaloppi EMT, Goes A, Spósito MB (2012) Período de incubação de Guignardia citricarpa em diferentes estádios fenológicos de frutos de laranjeira ‘Valência’. Tropical Plant Pathology 37(2):155–158CrossRefGoogle Scholar
  2. Amorim L, Spósito MB, Kuniyuki H (2016) Doenças da videira. In: Amorim, L. (5ª ed.). Manual de Fitopatologia doença de plantas cultivadas, p.p 752., L. Amorim, J. A. M. Rezende, A. Bergamim Filho, L. E. A. Camargo, Minas Gerais, BrazilGoogle Scholar
  3. Anonymous (2011) Ministério da Agricultura Pecuária e Abastecimento. Instrução normativa n. 46, de 6 de Outubro de 2011. Regulamento Técnico para os Sistemas Orgânicos de Produção Animal e Vegetal. Diário Oficial da União, 7 Outubro de 2011. Brasilia, DF, BrazilGoogle Scholar
  4. Atak A, Akkurt M, Polat Z, Celik H, Kahraman KA, Akgul DS, Ozer N, Soylemesoglu G, Sire G, Eibach R (2017) Susceptibility to downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator) of vitis cultivars and genotypes. Cienc Tec Vitivinic 32(1):23–32Google Scholar
  5. Bakhshi M, Arzanlou M, Babai-Ahari A, Groenewald JZ, Crous PW (2014) Multi-gene analysis of Pseudocercospora spp. from Iran. Phytotaxa 184(5):245–264CrossRefGoogle Scholar
  6. Barros LB, Biasi LA, Carisse O, May De Mio LL (2018) The influence of table grape rootstockand cultivar combinations on susceptibility to downy mildew. Australas Plant Pathol 47:171–179CrossRefGoogle Scholar
  7. Bassanezzi RB, Amorim L, Bergamin Filho A, Hau B (1998) Effects of bean line pattern mosaic virus on the monociclic components of rust and angulr leaf spot ofphaseolus bean at different temperatures. Plant Pathol 47:289–298Google Scholar
  8. Bergamin Filho A, Amorim L (1996) Doenças de plantas tropicais: epidemiologia e controle econômico. Ceres, p.129–150. São Paulo, BrazilGoogle Scholar
  9. Berger RD, Bergamin Filho A, Amorim L (1997) Lesion expansion as an epidemic component. Epidemiology 87(10)CrossRefGoogle Scholar
  10. Borges RS, Roberto SR, Yamashita F, Assis AM, Yamamotoi LY (2014) Produção e qualidade de frutos de clones de videira ‘Concord’ sobre diferentes porta-enxertos. Pesq Agropec Trop 44(2):198–204CrossRefGoogle Scholar
  11. Carvalho MS, Andreozzi VL, Codeço CT, Campos DP, Barbosa MTS, Shimakura SE (2011) Análise de Sobrevivência: teoria e aplicações em saúde. 2a ed. Rio de Janeiro, FIOCRUZ. 432pGoogle Scholar
  12. Chatzidimopoulos M, Pappas AC (2016) Epidemiology and control of Septoria pyricola in pear leaf and fruit. J Plant Pathol 98:447–452Google Scholar
  13. Guerra DS, Nickel O, Del Ponte EM, Sanhuesa RMV, Fajardo TVM, Marodin GAB (2012) Development of Glomerella leaf spot is enhanced in virus-infected maxi gala apples. J Plant Pathol 94:237–241Google Scholar
  14. Lenz G, Costa IN, Balardin RS, Marques LN, Arruél A, Stefanelo MS, Zemolin CR (2009) Elaboração e validação de escala diagramática para quantificação da mancha de Isariopsis da videira. Cienc Rural 39:2301–2308CrossRefGoogle Scholar
  15. Liang C, Jayawardena RS, Zhang W, Wang X, Liu M, Liu LZC, Xu X, Hyde KD, Yan J, Li X, Zhao K (2016) Identification and characterization of Pseudocercospora species causing grapevine leaf spot in China. J Phytopathol 164:75–85CrossRefGoogle Scholar
  16. Lorenzetti ER, Pozza EA, Souza PE, Santos LA, Alves E, Silva AC, Gonçalves F, Maia M, Carvalho RRC (2015) Effect of temperature and leaf wetness on Phoma tarda and phoma leaf spot in coffee seedlings. Coffee Sci 10:1–9Google Scholar
  17. Maia AJ, Schwan-Estrada KF, Faria CMR, Santos LA, Oliveira JBS, Santos RC (2015) Produção de esporos e efeito da temperatura e luminosidade sobre germinação e infecção de Pseudocercospora vitis em videira. Summa Phytopathol 41:287–291CrossRefGoogle Scholar
  18. Nogueira Junior AF, Fischer IH, Bragança CAD, Massola NSM Jr, Amorim L (2016) Identification of Botryosphaeriaceae species that cause stylar-end rot of guavas and characterisation of the disease monocycle. Eur J Plant Pathol 144:271–287CrossRefGoogle Scholar
  19. Ojiambo PS, Yuen J, Van den Bosch F, Madden LV (2017) Epidemiology: past, present, and future impacts on understanding disease dynamics and improving plant disease management - a summary of focus issue articles. Phytopathology 107:1092–1094PubMedGoogle Scholar
  20. Park J, Han K, Lee J, Seo S, Jang H, Kim H (2004) Occurrence tendency and decrease of fruits brix according to increasing grapevine leaf spot disease caused by Pseudocercospora vitis. Res Plant Dis 10:341–344CrossRefGoogle Scholar
  21. Park J, Kyeong-Suk H, Lee J, Seo S, Jang H, Kim H (2006) Pathogenicity and infection mechanism of Pseudocercospora vitis causing leaf spot disease on grapevine in Korea. Res Plant Dis 12:15–19CrossRefGoogle Scholar
  22. Park S, Kim S, Woo J, Choi S, Park S (2014) Control of grapevine leaf spot caused by Pseudocercospora vitis with application of bicarbonate. Fruit Grow Res 30:53–57Google Scholar
  23. R Development Core Team (2015) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. Disponível em: http://www.R-project.org/. Accessed 10 de maio de 2017
  24. Saha A, Mandal P, Dasgupta S, Saha D (2008) Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae (Pat.) Griffon and Maubl. J Environ Biol 29:407–410PubMedGoogle Scholar
  25. Shaner G, Finney RE (1997) The effect of nitrogen fertilization on the expression of slow-milewing resistance in Knox wheat. Phytopathology 67:1051–1056Google Scholar
  26. Sisterna M, Ronco L (2005) Occurrence of grapevine leaf spot caused by Pseudocercospora vitis in Argentina. Plant Pathol 54:247–247CrossRefGoogle Scholar
  27. Soares AR, Silvia AL, Amorim L (2008) Infecção de goibas por Colletotrichum gloeosporioides e Colletotrichum acutatum sob diferentes temperaturas e períodos de molhamento. Trop Plant Pathol 33:265–272Google Scholar
  28. Su Y, Qi Y, Cai L (2012) Induction of sporulation in plant pathologenic fungi. Mycology 33:195–200Google Scholar
  29. Teramoto A, Parisi MCM, Cunha MG (2013) Caracterização fisiológica de isolados de Corynespora cassiicola. Tropical Plant Pathology 38:313–322CrossRefGoogle Scholar
  30. Therneau T. (2012) A Package for Survival Analysis in S. R package version 2:36-12. Disponível em: http://CRAN.R-project.org/package=survival. Accessed 10 de maio de 2017

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2019

Authors and Affiliations

  • Eliane Aparecida Rogovski-Czaja
    • 1
  • Rafaele Regina Moreira
    • 1
  • Cristiano Nunes Nesi
    • 2
  • Henrique da Silva Silveira Duarte
    • 1
  • Louise Larissa May De Mio
    • 1
    Email author
  1. 1.Setor de Ciencias Agrárias, Departamento de Fitotecnia e FitossanidadeUniversidade Federal do Paraná (UFPR)CuritibaBrazil
  2. 2.Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI)ChapecóBrazil

Personalised recommendations