Advertisement

Journal of Plant Pathology

, Volume 101, Issue 1, pp 121–127 | Cite as

Beneficial effects of Rhizophagus irregularis and Trichoderma asperellum strain T34 on growth and fusarium wilt in tomato plants

  • B. Bidellaoui
  • G. Segarra
  • A. Hakkou
  • M. Isabel TrillasEmail author
Original Article
  • 47 Downloads

Abstract

Fusarium tomato wilt is one of the most prevalent and damaging diseases wherever tomatoes are grown intensively. Progress in agriculture in the twenty-first century is set to be based on lowering agrochemical inputs (implementation of Directive 2009/128/EC on sustainable use of pesticides), which can be achieved to some extent through the use of beneficial microorganisms. This study aimed at comparing the effects of the mycorrhizal fungus Rhizophagus irregularis and the biological control agent Trichoderma asperellum strain T34 on the incidence of fusarium wilt and the growth of tomato plants. Both R. irregularis and T34 lowered disease incidence at similar rates, compared to control plants. R. irregularis added below the seedlings reduced disease incidence more than when it was mixed with the substrate. T34 and R. irregularis increased plant height to the same extent, compared to both control and diseased plants. R. irregularis gave the highest levels of chlorophyll, followed by T34 and control plants; however, the measures for infected plants were slightly better for T34 than for R. irregularis. T34 and R. irregularis had similar effects on Ca, Mg, S, Mn, B and Si uptake in tomato plants, but R. irregularis induced a greater P, K, Zn, Cu and Mo accumulation than T34. Interestingly, at the end of the experiment, the depletion of the substrate was lower on Ca, Mg and S for plants inoculated with either R. irregularis or T34 compared to control plants, while the substrate for T34-treated plants had the lowest levels of Fe, Mn, Zn and Cu.

Keywords

Biological control Fusarium oxysporum Lycopersicon esculentum Mill. Mycorrhizae Plant nutrition 

Notes

Acknowledgements

This research was partially funded by AGAUR (Generalitat de Catalunya regional authority) via the project 2014SGR863: Fisiologia de les plantes enrelació amb l’ambient.

References

  1. Altomare C, Tringovska I (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai1295–22. Appl Environ Microbiol 65:2926–2933Google Scholar
  2. Altomare C, Tringovska I (2011) Beneficial soil microorganisms, an ecological alternative for soil fertility management. In: Lichtfouse E (ed) Genetics, biofuels and local farming systems. Springer, Switzerland, pp 161–214CrossRefGoogle Scholar
  3. Azcón-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. In: Gianfreda, L. (guest editor) biogeochemical processes in the rhizosphere and their influence on plant nutrition. Special issue of the J Soil Sci Plant Nutr 15:372–396Google Scholar
  4. Bigirimana J, De Meyer G, Poppe J, Elad Y, Höfte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Mededelingen Van De Faculteit L and dbouwkundigeen To egepaste Biologische Wetenschappen, Universiteit Gent 62: 1001–1007Google Scholar
  5. Borrero C, Trillas MI, Delgado A, Avilés M (2012) Effect of ammonium / nitrate ratio in nutrient solution on control of fusarium wilt of tomato by Trichoderma asperellum T34. Plant Pathol 61:132–139CrossRefGoogle Scholar
  6. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  7. Chung YR, Hoitink HAJ (1990) Interactions between thermophilic fungi and Trichoderma hamatum in suppression of Rhizoctonia damping off in a bark compost-amended container medium. Phytopathology 80:73–77CrossRefGoogle Scholar
  8. Cotxarrera L, Trillas MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost and Trichoderma asperellum isolates to suppress fusarium wilt of tomato. Soil Biol Biochem 34:467–476CrossRefGoogle Scholar
  9. De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286CrossRefGoogle Scholar
  10. de Santiago A, Quintero JM, Avilés M, Delgado A (2011) Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat Brown on a calcareous medium. Plant Soil 342:97–104CrossRefGoogle Scholar
  11. Djonovic´ S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853CrossRefGoogle Scholar
  12. Djonovic´ S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889CrossRefGoogle Scholar
  13. Dubey SC, Suresh M, Singh B (2007) Evaluation of Trichoderma species against Fusarium oxysporum f. Sp. ciceris for integrated management of chickpea wilt. Biol Control 40:118–127CrossRefGoogle Scholar
  14. Franken P, Donges K, Grunwald U, Kost G, Rexer KH, Tamasloukht M, Waschke A, Zeuske D (2007) Gene expression analysis of arbuscule development and functioning. Phytochemistry 68:68–74CrossRefGoogle Scholar
  15. García-López AM, Avilés M, Delgado A (2016) Effect of various microorganisms on phosphorus uptake from insoluble ca-phosphates by cucumber plants. J Plant Nutr Soil Sci 000:1–12Google Scholar
  16. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  17. Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interactions between Trichoderma harzianum strain T22 and maize line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153CrossRefGoogle Scholar
  18. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10CrossRefGoogle Scholar
  19. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control or Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252CrossRefGoogle Scholar
  20. Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6CrossRefGoogle Scholar
  21. Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. Biol Control 53:667–683Google Scholar
  22. Kragelund L, Nybroe O (1996) Competition between Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134 (pJP4) during colonization of barley roots. FEMS Microbiol Ecol 20:41–51CrossRefGoogle Scholar
  23. Lemanceau P, Alabouvette C, Meyer JM (1985) Production of fusarinine and iron assimilation by pathogenic and non-pathogenic fusarium. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum Press, London, pp 251–259Google Scholar
  24. López-Bucio J (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 121:1–6Google Scholar
  25. Martínez-Medina A, Roldán A, Albacete A, Pascual JA (2011a) The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72:223–229CrossRefGoogle Scholar
  26. Martínez-Medina A, Roldán A, Pascual JA (2011b) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium wilt biocontrol. Appl Soil Ecol 47:98–105CrossRefGoogle Scholar
  27. Ministerio de Agricultura (2017) Alimentación y Medio Ambiente, monthly statistical bulletin, SpainGoogle Scholar
  28. Nahalkova J, Fatehi J, Olivain C, Alabouvette C (2008) Tomato root colonization by fluorescent-tagged pathogenic and protective strains of Fusarium oxysporum in hydroponic culture differs from root colonization in soil. FEMS Microbiol Lett 286:152–157CrossRefGoogle Scholar
  29. Nogués S, Cotxarrera L, Alegre L, Trillas MI (2002) Limitations to photosynthesis in tomato leaves induced by Fusarium wilt. New Phytol 154:461–470CrossRefGoogle Scholar
  30. Olivain C, Alabouvette C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341CrossRefGoogle Scholar
  31. Raaijmakers JM, van der Sluis I, Koster M, Bakker PAHM, Weisbeek PJ, Schippers B (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41:126–135CrossRefGoogle Scholar
  32. Samuels GJ, Lieckfeldt E, Nirenberg HI (1999) Trichoderma asperellum, a new species with warted conidia, and redescription of T. viride. Sydowia 51:71–88Google Scholar
  33. Sant D, Casanova E, Segarra G, Avilés M, Reis M, Isabel Trillas MI (2010) Effect of Trichoderma asperellum strain T34 on fusarium wilt and water usage in carnation grown on compost-based growth medium. Biol Control 53:291–296CrossRefGoogle Scholar
  34. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas MI (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952CrossRefGoogle Scholar
  35. Segarra G, Van der Ent S, Trillas MI, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96CrossRefGoogle Scholar
  36. Segarra G, Casanova E, Avilés M, Trillas MI (2010) Trichoderma asperellumstrain T34 controls fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149CrossRefGoogle Scholar
  37. Segarra G, Avilés M, Casanova E, Borrero C, Trillas MI (2013) Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr 52(1):77–83Google Scholar
  38. Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84CrossRefGoogle Scholar
  39. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360CrossRefGoogle Scholar
  40. Smith GS (1988) The role of phosphorus nutrition in interactions of vesicular arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78:371–374Google Scholar
  41. Smith FA, Smith SE (2015) How harmonious are arbuscular mycorrhizal symbioses? Inconsistent concepts reflect different mindsets as well as results. New Phytol 205:1381–1384CrossRefGoogle Scholar
  42. Sukhada M (2011) Evaluation of arbuscular mycorrhiza and other biocontrol agents against Phytophthora parasitica var. nicotianae infecting papaya (Carica papaya cv. Surya) and enumeration of pathogen population using immunotechniques. Biol Control 58:22–29CrossRefGoogle Scholar
  43. Trillas MI, Casanova E, Cotxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol Control 39:32–38CrossRefGoogle Scholar
  44. Verma M, Brar KS, Tyagi RD, Surampalli RY, Valeri JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20CrossRefGoogle Scholar
  45. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10Google Scholar
  46. Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentration and increased growth of cucumber plants. Plant Soil 235:235–242CrossRefGoogle Scholar
  47. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353Google Scholar

Copyright information

© Società Italiana di Patologia Vegetale (S.I.Pa.V.) 2018

Authors and Affiliations

  • B. Bidellaoui
    • 1
  • G. Segarra
    • 1
  • A. Hakkou
    • 2
  • M. Isabel Trillas
    • 1
    Email author
  1. 1.Plant Physiology Section, Faculty of BiologyUniversitat de BarcelonaBarcelonaSpain
  2. 2.Laboratory of Biochemistry, Department of Biology, Faculty of SciencesUniversity MohamedOujdaMorocco

Personalised recommendations