Macroscopic carbon nanotube assembly/silicon carbide matrix composites produced by gas phase route

  • Daoyang Han
  • Hui MeiEmail author
  • Shanshan Xiao
  • Laifei Cheng
Original Research


Macroscopic carbon nanotube (CNT) self-assemblies are attractive in the field of high-performance composites for taking full advantage of outstanding physical and mechanical properties of individual CNTs at macroscopic level. In this study, macroscopic SiC ceramic matrix composites (CMCs) containing CNTs (CNT/SiC) based on the macroscopic CNT self-assemblies were fabricated using ice-segregation-induced self-assembly technique and chemical vapor infiltration process. The microstructure, macromechanical properties, electrical conductivity, and electromagnetic shielding effectiveness of the fabricated CNT/SiC composites were studied systematically.

Graphical abstract


Macroscopic carbon nanotube assembly Chemical vapor infiltration (CVI) Carbon nanotube/silicon carbide (CNT/SiC) composites 


Funding information

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51772246, 51272210, 50902112, and U1737209), Program for New Century Excellent Talents in University (Grant No. NCET-13-0474), Fundamental Research Funds for the Central Universities (Grant Nos. 3102017jg02001 and 3102018jcc002), and National Program for Support of Top-Notch Young Professionals.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yu G, Lu Y, Guo J, Patel M, Bafana A, Wang X, Qiu B, Jeffryes C, Wei S, Guo Z, Wujcik EK (2018) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Compos Hybrid Mater 1(1):56–78CrossRefGoogle Scholar
  2. 2.
    Haikun W, Huang X, Qian L (2018) Preparation, mechanism and property of metacomposites with carbon materials as fillers. Engineered Science 2:17–25Google Scholar
  3. 3.
    Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1(3):415–439CrossRefGoogle Scholar
  4. 4.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640CrossRefGoogle Scholar
  5. 5.
    Pan ZW, Xie SS, Lu L, Chang BH, Sun LF, Zhou WY, Wang G, Zhang DL (1999) Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Appl Phys Lett 74(21):3152–3154CrossRefGoogle Scholar
  6. 6.
    Bower C, Rosen R, Jin L (1999) Deformation of carbon nanotubes in nanotube-polymer composites. Appl Phys Lett 74(22):3317–3319CrossRefGoogle Scholar
  7. 7.
    Estili M, Sakka Y (2014) Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Sci Technol Adv Mater 15(6):1–25CrossRefGoogle Scholar
  8. 8.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020CrossRefGoogle Scholar
  9. 9.
    Gu J, Zhang Q, Tang Y, Zhang J, Kong J, Dang J, Zhang H, Wang X (2008) Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified β-SiC whisker filled celluloid nano-composites. Surf Coat Technol 202(13):2891–2896CrossRefGoogle Scholar
  10. 10.
    Gu J, Zhang Q, Dang J, Yin C, Chen S (2012) Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. J Appl Polym Sci 124(1):132–137CrossRefGoogle Scholar
  11. 11.
    Han D, Mei H, Xiao S, Dassios KG, Cheng L (2018) A review on the processing technologies of carbon nanotube/silicon carbide composites. J Eur Ceram Soc 38(11):3695–3708CrossRefGoogle Scholar
  12. 12.
    Hajiaboutalebi M, Rajabi M, Khanali O (2017) Physical and mechanical properties of SiC-CNTs nano-composites produced by a rapid microwave process. J Mater Sci Mater Electron 28(12):8986–8992CrossRefGoogle Scholar
  13. 13.
    Candelario VM, Moreno R, Shen Z, Guiberteau F, Ortiz AL (2017) Liquid-phase assisted spark-plasma sintering of SiC nanoceramics and their nanocomposites with carbon nanotubes. J Eur Ceram Soc 37(5):1929–1936CrossRefGoogle Scholar
  14. 14.
    Thostenson ET, Karandikar PG, Chou TW (2005) Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. J Phys D Appl Phys 38(21):3962–3965CrossRefGoogle Scholar
  15. 15.
    Song N, Liu H, Fang J (2016) Fabrication and mechanical properties of multi-walled carbon nanotube reinforced reaction bonded silicon carbide composites. Ceram Int 42(1, Part A):351–356CrossRefGoogle Scholar
  16. 16.
    Wang HZ, Li XD, Ma J, Li GY, Hu TJ (2012) Multi-walled carbon nanotube-reinforced silicon carbide fibers prepared by polymer-derived ceramic route. Compos A: Appl Sci Manuf 43(3):317–324CrossRefGoogle Scholar
  17. 17.
    Yamamoto G, Yokomizo K, Omori M, Sato Y, Jeyadevan B, Motomiya K, Hashida T, Takahashi T, Okubo A, Tohji K (2007) Polycarbosilane-derived SiC/single-walled carbon nanotube nanocomposites. Nanotechnology 18(14):145614–145618CrossRefGoogle Scholar
  18. 18.
    Bose S, Mukherjee M, Pal K, Nayak GC, Das CK (2010) Development of core-shell structure aided by SiC-coated MWNT in ABS/LCP blend. Polym Adv Technol 21(4):272–278Google Scholar
  19. 19.
    Novak S, Iveković A (2013) SiC-CNT composite prepared by electrophoretic codeposition and the polymer infiltration and pyrolysis process. J Phys Chem B 117(6):1680–1685CrossRefGoogle Scholar
  20. 20.
    Mei H, Bai Q, Dassios KG, Ji T, Xiao S, Li H, Cheng L, Galiotis C (2015) Oxidation resistance of aligned carbon nanotube-reinforced silicon carbide composites. Ceram Int 41(9, Part B):12495–12498CrossRefGoogle Scholar
  21. 21.
    Poelma RH, Morana B, Vollebregt S, Schlangen E, Zeijl HWV, Fan X, Guo QZ (2014) Tailoring the mechanical properties of high-aspect-ratio carbon nanotube arrays using amorphous silicon carbide coatings. Adv Funct Mater 24(36):5737–5744CrossRefGoogle Scholar
  22. 22.
    Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY, Zhang L, Li X, Pan Z (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49(7):2475–2482CrossRefGoogle Scholar
  23. 23.
    Yang Y, Chen W, Hacopian E, Dong P, Sun A, Ci L, Lou J (2016) Unveil the size-dependent mechanical behaviors of individual CNT/SiC composite nanofibers by in situ tensile tests in SEM. Small 12(33):4486–4491CrossRefGoogle Scholar
  24. 24.
    Kothari AK, Hu S, Xia Z, Konca E, Sheldon BW (2012) Enhanced fracture toughness in carbon-nanotube-reinforced amorphous silicon nitride nanocomposite coatings. Acta Mater 60(8):3333–3339CrossRefGoogle Scholar
  25. 25.
    Kothari AK, Sheldon BW, Eres G (2012) Thickness limitations in carbon nanotube reinforced silicon nitride coatings synthesized by vapor infiltration. Acta Mater 60(20):7104–7111CrossRefGoogle Scholar
  26. 26.
    Kaiyuan L, Yingchao Y, Zhanjun G, HJ Y, Gyula E, Litong Z, Xiaodong L, Zhengwei P (2014) Approaching carbon nanotube reinforcing limit in B4C matrix composites produced by chemical vapor infiltration. Adv Eng Mater 16(2):161–166CrossRefGoogle Scholar
  27. 27.
    Mei H, Huang W, Hua C, Xu Y, Cheng L (2018) A novel approach to strengthen naturally pored wood for highly efficient photodegradation. Carbon 139:378–385CrossRefGoogle Scholar
  28. 28.
    Yin XW, Cheng LF, Zhang LT, Travitzky N, Greil P (2017) Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev 62(3):117–172CrossRefGoogle Scholar
  29. 29.
    Fan X, Yin X (2018) Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Adv Compos Hybrid Mater 1(4):685–695Google Scholar
  30. 30.
    Luqi L, Wenjun M, Zhong Z (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7(11):1504–1520CrossRefGoogle Scholar
  31. 31.
    Han D, Mei H, Farhan S, Xiao S, Xia J, Cheng L (2017) Anisotropic compressive properties of porous CNT/SiC composites produced by direct matrix infiltration of CNT aerogel. J Am Ceram Soc 100(5):2243–2252CrossRefGoogle Scholar
  32. 32.
    Han D, Mei H, Xiao S, Cheng L (2018) A direct chemical vapor infiltration route for a carbon nanotube/silicon carbide thermal protection system. J Alloys Compd 745:409–412CrossRefGoogle Scholar
  33. 33.
    Schelkunoff SA, Brittain JE (1996) Sergei a. Schelkunoff and the antenna theory [scanning the past]. Proc IEEE 84(9):1344CrossRefGoogle Scholar
  34. 34.
    Wang L, Qiu H, Liang C, Song P, Han Y, Han Y, Gu J, Kong J, Pan D, Guo Z (2019) Electromagnetic interference shielding MWCNT-Fe3O4@ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514CrossRefGoogle Scholar
  35. 35.
    Paul CR (2006) The electromagnetic field equations and waves. In: Introduction to electromagnetic compatibility. John Wiley & Sons, Inc., Hoboken. pp 925-927Google Scholar
  36. 36.
    Hoeft LO, Hofstra JS (1988) Measured electromagnetic shielding performance of commonly used cables and connectors. IEEE Trans Electromagn Compat 30(3):260–275CrossRefGoogle Scholar
  37. 37.
    Hong YK, Lee CY, Jeong CK, Lee DE, Kim K, Joo J (2003) Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev Sci Instrum 74(2):1098–1102CrossRefGoogle Scholar
  38. 38.
    Lv L, Liu J, Liu H, Liu C, Lu Y, Sun K, Fan R, Wang N, Lu N, Guo Z, Wujcik EK (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng Sci 2:26–42CrossRefGoogle Scholar
  39. 39.
    Yin X, Kong L, Zhang L, Cheng L, Travitzky N, Greil P (2014) Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev 59(6):326–355Google Scholar
  40. 40.
    Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357CrossRefGoogle Scholar
  41. 41.
    Deville S, Saiz E, Tomsia AP (2007) Ice-templated porous alumina structures. Acta Mater 55(6):1965–1974CrossRefGoogle Scholar
  42. 42.
    Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746CrossRefGoogle Scholar
  43. 43.
    Han Y, Liu Y, Han L, Lin J, Jin P (2017) High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115:34–42CrossRefGoogle Scholar
  44. 44.
    Wang H, Wang G, Li W, Wang Q, Wei W, Jiang Z, Zhang S (2012) A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly (ether sulfone) in a poly(ether ether ketone) matrix. J Mater Chem 22(39):21232–21237CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations