Advertisement

Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review

  • Tushar Kanti Das
  • Prosenjit Ghosh
  • Narayan Ch. Das
Review
  • 28 Downloads

Abstract

The high strength to weight ratio of carbon fiber has made it as an attractive energy-saving material over the conventional strength-bearing materials like steel. Realizing the trend, the high-weight steel is being progressively replaced by the low-weight and corrosion-resistant carbon fiber composites in many strength applications. The carbon fiber-reinforced polymer matrix composite (PMC) have thereby become forefront material in aerospace, automobile, sporting goods, and other applications which demand high strength and high modulus. Moreover, the gradual reduction of its cost curtsy to the extensive research in the field of carbon fiber technology in recent years has been opened its market in different construction applications. This review is the discussion of carbon fiber loaded a variety of polymer matrix composites where the structural importance of these composites has been emphasized. The objective of this discussion is to provide information on the whole spectrum of carbon fiber-based polymeric composites. It also includes brief discussion about preparation and properties of carbon fibers along with processing, fabrication, and structural applications of these carbon fiber-based polymer composites.

Graphical abstract

Keywords

Carbon fiber Polymer matrix composite Reinforcement Structural applications 

Abbreviations

CF

Carbon fiber

GF

Glass fiber

PMC

Polymeric matrix composite

FRP

Fiber-reinforced polymer composite

AF

Aramid fibers

PAN

Polyacrylonitrile

UHM

Ultrahigh modulus

HM

High modulus

IM

Intermediate modulus

SHT

Super high tensile strength

HIT

High-heat treatment

IHT

Intermediate-heat treatment

LHT

Low-heat treatment

PES

Polyethersulfone

PPS

Polyphenyl sulfide

PEEK

Polyetheretherketone

PEI

Polyetherimide

PI

Polyimide

RTM

Resin transfer molding

EMI

Electromagnetic interference

Tg

Glass transition temperature

PC

Polycarbonate

PLA

Polylactic acid

SEM

Scanning electron microscope

STM

Scanning tunneling microscope

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kong L, Liu H, Cao W, Xu L (2014) PAN fiber diameter effect on the structure of PAN-based carbon fibers. Fibers Polym 15(12):2480–2488CrossRefGoogle Scholar
  2. 2.
    Oroumei A, Naebe M (2017) Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym 18(11):2079–2093CrossRefGoogle Scholar
  3. 3.
    Shirvanimoghaddam K, Hamim SU, Akbari MK, Fakhrhoseini SM, Khayyam H, Pakseresht AH, Ghasali E, Zabet M, Munir KS, Jia S (2017) Carbon fiber reinforced metal matrix composites: fabrication processes and properties. Compos Part A 92:70–96CrossRefGoogle Scholar
  4. 4.
    Dong C, Davies IJ (2018) Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv Compos Hybrid Mater.  https://doi.org/10.1007/s42114-018-0034-5
  5. 5.
    Edison TA (1880) Electric lamp. U.S. Patent No. 223,898Google Scholar
  6. 6.
    Roger B (1960) Filamentary graphite and method for producing the same. Google Patents US Patent No 2,957,756Google Scholar
  7. 7.
    Sittig M (1980) Carbon and graphite fibers: manufacture and applications, vol 162. Noyes Publications, Saddle RiverGoogle Scholar
  8. 8.
    Dresselhaus MS, Dresselhaus G, Sugihara K, Spain IL, Goldberg HA (1988) Synthesis of graphite fibers and filaments. In: Graphite fibers and filaments. Springer, Berlin, pp 12–34CrossRefGoogle Scholar
  9. 9.
    Liu Y, Kumar S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev 52(3):234–258CrossRefGoogle Scholar
  10. 10.
    Mallick PK (2007) Fiber-reinforced composites: materials, manufacturing, and design. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873CrossRefGoogle Scholar
  12. 12.
    Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv Compos Hybrid Mater 1:32–55CrossRefGoogle Scholar
  13. 13.
    Ko T-H, Liau S-C, Lin M-F (1992) Preparation of graphite fibres from a modified PAN precursor. J Mater Sci 27(22):6071–6078CrossRefGoogle Scholar
  14. 14.
    Hou C, Qu R, Liu J, Ying L, Wang C (2006) High-molecular-weight polyacrylonitrile by atom transfer radical polymerization. J Appl Polym Sci 100(4):3372–3376CrossRefGoogle Scholar
  15. 15.
    Sawai D, Fujii Y, Kanamoto T (2006) Development of oriented morphology and tensile properties upon superdawing of solution-spun fibers of ultra-high molecular weight poly (acrylonitrile). Polymer 47(12):4445–4453CrossRefGoogle Scholar
  16. 16.
    An N, Xu Q, Xu LH, Wu SZ (2006) Orientation structure and mechanical properties of polyacrylonitrile precursors. In: Adv Mater Res. Trans Tech Publ pp 383–386Google Scholar
  17. 17.
    Kabir M, Wang H, Lau K, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B 43(7):2883–2892CrossRefGoogle Scholar
  18. 18.
    Bledzki A, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRefGoogle Scholar
  19. 19.
    Gu H, Liu C, Zhu J, Gu J, Wujcik EK, Shao L, Wang N, Wei H, Scaffaro R, Zhang J (2018) Introducing advanced composites and hybrid materials. Adv Compos Hybrid Mater 1:1–5CrossRefGoogle Scholar
  20. 20.
    Ishida H, Kumar G (2013) Molecular characterization of composite interfaces, vol 27. Springer Science & Business Media, BerlinGoogle Scholar
  21. 21.
    Hull D, Clyne T (1996) An introduction to composite materials. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  22. 22.
    Vallittu PK (2015) High-aspect ratio fillers: fiber-reinforced composites and their anisotropic properties. Dent Mater 31(1):1–7CrossRefGoogle Scholar
  23. 23.
    Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Marêché J (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53(10):6209CrossRefGoogle Scholar
  24. 24.
    Chung D (2000) Cement reinforced with short carbon fibers: a multifunctional material. Compos Part B 31(6–7):511–526CrossRefGoogle Scholar
  25. 25.
    Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater.  https://doi.org/10.1007/s42114-018-0022-9
  26. 26.
    Fitzer E, Geigl K-H, Hüttner W, Weiss R (1980) Chemical interactions between the carbon fibre surface and epoxy resins. Carbon 18(6):389–393CrossRefGoogle Scholar
  27. 27.
    Dvir H, Jopp J, Gottlieb M (2006) Estimation of polymer–surface interfacial interaction strength by a contact AFM technique. J Colloid Interface Sci 304(1):58–66CrossRefGoogle Scholar
  28. 28.
    Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J (2014) Carbon fiber surfaces and composite interphases. Compos Sci Technol 102:35–50CrossRefGoogle Scholar
  29. 29.
    Soutis C (2005) Carbon fiber reinforced plastics in aircraft construction. Mater Sci Eng A 412(1–2):171–176CrossRefGoogle Scholar
  30. 30.
    Chowdhury P, Sehitoglu H, Rateick R (2018) Damage tolerance of carbon-carbon composites in aerospace application. Carbon 126:382–393CrossRefGoogle Scholar
  31. 31.
    Baschnagel F, Härdi R, Triantafyllidis Z, Meier U, Terrasi GP (2018) Fatigue and durability of laminated carbon fibre reinforced polymer straps for bridge suspenders. Polymers 10(2):169CrossRefGoogle Scholar
  32. 32.
    Elanchezhian C, Ramnath BV, Ramakrishnan G, Raghavendra KS, Muralidharan M, Kishore V (2018) Review on metal matrix composites for marine applications. Mater Today 5(1):1211–1218CrossRefGoogle Scholar
  33. 33.
    Greenwood S (2018) Shafts with reinforcing layer for sporting goods and methods of manufacture. U.S. Patent. Application no. 15/639,654Google Scholar
  34. 34.
    Tong L, Mouritz AP, Bannister M (2002) 3D fibre reinforced polymer composites, 1st edn. Elsevier Science, AtlantaGoogle Scholar
  35. 35.
    Liao G, Li Z, Cheng Y, Xu D, Zhu D, Jiang S, Guo J, Chen X, Xu G, Zhu Y (2018) Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Mater Des 139:283–292CrossRefGoogle Scholar
  36. 36.
    Chung D (2017) Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Mater Sci Eng R Rep 113:1–29CrossRefGoogle Scholar
  37. 37.
    Naqvi S, Prabhakara HM, Bramer E, Dierkes W, Akkerman R, Brem G (2018) A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour Conserv Recycl 136:118–129CrossRefGoogle Scholar
  38. 38.
    Pinheiro D, Longo O, Nascimento G, Couri G (2017) Use of composite materials in carbon Fiber for the recovery of small slab–calculation by analytical and computational methods. Int J Compos Mater 7(1):1–7Google Scholar
  39. 39.
    Roberts T (2011) The carbon fibre industry worldwide 2011-2020, vol 6. Materials Technology Publications, Watford, p 29Google Scholar
  40. 40.
    Wei H, Nagatsuka W, Lee H, Ohsawa I, Sumimoto K, Wan Y, Takahashi J (2018) Mechanical properties of carbon fiber paper reinforced thermoplastics using mixed discontinuous recycled carbon fibers. Adv Compos Mater 27(1):19–34CrossRefGoogle Scholar
  41. 41.
    Barbero EJ (2017) Introduction to composite materials design. CRC Press, Boca RatonGoogle Scholar
  42. 42.
    Tang MM, Bacon R (1964) Carbonization of cellulose fibers—I. low temperature pyrolysis. Carbon 2(3):211–220CrossRefGoogle Scholar
  43. 43.
    Hoecker F, Karger‐Kocsis J (1996) Surface energetics of carbon fibers and its effects on the mechanical performance of CF/EP composites. J Appl Polym Sci 59(1):139–153Google Scholar
  44. 44.
    Hoffman W, Hurley W, Liu P, Owens T (1991) The surface topography of non-shear treated pitch and PAN carbon fibers as viewed by the STM. J Mater Res 6(8):1685–1694CrossRefGoogle Scholar
  45. 45.
    Oberlin A (1984) Carbonization and graphitization. Carbon 22(6):521–541CrossRefGoogle Scholar
  46. 46.
    Bourrat X, Roche E, Lavin J (1990) Structure of mesophase pitch fibers. Carbon 28(2–3):435–446CrossRefGoogle Scholar
  47. 47.
    Damodaran S, Desai P, Abhiraman A (1990) Chemical and physical aspects of the formation of carbon fibres from PAN-based precursors. J Text Inst 81(4):384–420CrossRefGoogle Scholar
  48. 48.
    Zhu J, Park SW, Joh H-I, Kim HC, Lee S (2013) Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Lett 14(2):94–98CrossRefGoogle Scholar
  49. 49.
    Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55(8):825–833CrossRefGoogle Scholar
  50. 50.
    Gupta A, Harrison I (1996) New aspects in the oxidative stabilization of PAN-based carbon fibers. Carbon 34(11):1427–1445CrossRefGoogle Scholar
  51. 51.
    Toury B, Miele P, Cornu D, Vincent H, Bouix J (2002) Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines. Adv Funct Mater 12(3):228–234CrossRefGoogle Scholar
  52. 52.
    Almeida E, Diniz A, Rosolen J, Trava-Airoldi V, Ferreira N (2005) Structural and voltammetric studies at boron-doped diamond electrode grown on carbon felt produced from different temperatures. Diam Relat Mater 14(3):679–684CrossRefGoogle Scholar
  53. 53.
    Donnet J-B, Qin R-Y (1992) Study of carbon fiber surfaces by scanning tunnelling microscopy, part i. carbon fibers from different precursors and after various heat treatment temperatures. Carbon 30(5):787–796CrossRefGoogle Scholar
  54. 54.
    MInus M, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57(2):52–58CrossRefGoogle Scholar
  55. 55.
    Yusof N, Ismail A (2012) Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber: a review. J Anal Appl Pyrolysis 93:1–13CrossRefGoogle Scholar
  56. 56.
    Balasubramanian M, Jain M, Bhattacharya S, Abhiraman A (1987) Conversion of acrylonitrile-based precursors to carbon fibres. J Mater Sci 22(11):3864–3872CrossRefGoogle Scholar
  57. 57.
    Wicks B, Coyle R (1976) Microstructural inhomogeneity in carbon fibres. J Mater Sci 11(2):376–383CrossRefGoogle Scholar
  58. 58.
    Donnet J (1982) Structure and reactivity of carbons: from carbon black to carbon composites. Carbon 20(4):267–282CrossRefGoogle Scholar
  59. 59.
    Saufi SM, Ismail AF (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. Songklanakarin J Sci Technol 24:843–854Google Scholar
  60. 60.
    Fitzer E (1990) Carbon fibres—present state and future expectations. In: Carbon Fibers Filaments and Composites. Springer, Berlin, pp 3–41CrossRefGoogle Scholar
  61. 61.
    Meier U, Winistorfer A (1995) 55 RETROFITTING OF STRUCTURES THROUGH EXTERNAL BONDING OF CFRP SHEETS. In: Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium,. CRC Press, p 465Google Scholar
  62. 62.
    Kumar S, Adams W, Helminiak T (1988) Uniaxial compressive strength of high modulus fibers for composites. J Reinf Plast Compos 7(2):108–119CrossRefGoogle Scholar
  63. 63.
    Leal AA, Deitzel JM, Gillespie JW Jr (2009) Compressive strength analysis for high performance fibers with different modulus in tension and compression. J Compos Mater 43(6):661–674CrossRefGoogle Scholar
  64. 64.
    Hayes G, Edie D, Kennedy J (1993) The recoil compressive strength of pitch-based carbon fibres. J Mater Sci 28(12):3247–3257CrossRefGoogle Scholar
  65. 65.
    Peebles LH (2018) Carbon fibers: formation, structure, and properties. CRC Press, Boca RatonCrossRefGoogle Scholar
  66. 66.
    Naito K (2018) Stress analysis and fracture toughness of notched polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon 126:346–359CrossRefGoogle Scholar
  67. 67.
    Newcomb BA, Chae HG (2018) The properties of carbon fibers. In: Handbook of properties of textile and technical Fibres, 2nd edn. Elsevier, Amsterdam, pp 841–871CrossRefGoogle Scholar
  68. 68.
    Chung DD, Chung D (2012) Carbon fiber composites. Butterworth-Heinemann, OxfordGoogle Scholar
  69. 69.
    Tiwari S, Bijwe J (2014) Surface treatment of carbon fibers-a review. Procedia Technol 14:505–512CrossRefGoogle Scholar
  70. 70.
    Bacon R, Silvaggi AF (1971) Electron microscope study of the microstructure of carbon and graphite fibers from a rayon precursor. Carbon 9(3):321–325.  https://doi.org/10.1016/0008-6223(71)90051-0 CrossRefGoogle Scholar
  71. 71.
    Tang LG (1996) Influence of boron treatment on oxidation of carbon fiber in air. J Appl Polym Sci 59(6):915–921CrossRefGoogle Scholar
  72. 72.
    Roche E, Lavin J, Parrish R (1988) The mosaic nature of the graphite sheet in pitch-based carbon fibers. Carbon 26(6):911–913CrossRefGoogle Scholar
  73. 73.
    Kumar S, Anderson D, Crasto A (1993) Carbon fibre compressive strength and its dependence on structure and morphology. J Mater Sci 28(2):423–439CrossRefGoogle Scholar
  74. 74.
    Bhawal P, Das TK, Ganguly S, Mondal S, Ravindren R, Das NC (2018) Fabrication of light weight mechanically robust short carbon Fiber/ethylene methyl acrylate polymeric nanocomposite for effective electromagnetic interference shielding. J Polym Sci Appl 1:2(1-13)Google Scholar
  75. 75.
    Jia Z, Li T, F-p C, Wang L (2018) An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites. Compos Sci Technol 154:53–63.  https://doi.org/10.1016/j.compscitech.2017.11.015 CrossRefGoogle Scholar
  76. 76.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRefGoogle Scholar
  77. 77.
    Jiang D, Liu L, Zhao F, Zhang Q, Sun S, He J, Jiang B, Huang Y (2014) Improved interfacial properties of carbon fiber/unsaturated polyester composites through coating polyhedral oligomeric silsesquioxane on carbon fiber surface. Fibers Polym 15(3):566–573CrossRefGoogle Scholar
  78. 78.
    Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432.  https://doi.org/10.1016/j.polymdegradstab.2007.03.023 CrossRefGoogle Scholar
  79. 79.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRefGoogle Scholar
  80. 80.
    Vautard F, Ozcan S, Poland L, Nardin M, Meyer H (2013) Influence of thermal history on the mechanical properties of carbon fiber–acrylate composites cured by electron beam and thermal processes. Compos Part A 45:162–172CrossRefGoogle Scholar
  81. 81.
    Tezcan J, Ozcan S, Gurung B, Filip P (2008) Measurement and analytical validation of interfacial bond strength of PAN-fiber-reinforced carbon matrix composites. J Mater Sci 43(5):1612–1618CrossRefGoogle Scholar
  82. 82.
    Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105:144–150CrossRefGoogle Scholar
  83. 83.
    Hine P, Davidson N, Duckett R, Ward I (1995) Measuring the fibre orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced nylon. Compos Sci Technol 53(2):125–131CrossRefGoogle Scholar
  84. 84.
    Bijsterbosch H, Gaymans R (1995) Polyamide 6—long glass fiber injection moldings. Polym Compos 16(5):363–369CrossRefGoogle Scholar
  85. 85.
    Chung DD (2003) Science of composite materials. In: Composite Materials. Springer, Berlin, pp 15–54CrossRefGoogle Scholar
  86. 86.
    Whang W-T, Liu W-L (1990) Interfacial characteristics of high performance carbon fiber/thermoplastic composites with polyimide coupling agents. SAMPE Q 22(1):3–9Google Scholar
  87. 87.
    Carrillo G, Phelan P, Brown W, Newell E (1988) Materials-Pathway to the future; Proceedings of the Thirty-third International SAMPE Symposium and Exhibition, Anaheim, CA, Mar. 7–10, 1988. Society for the Advancement of material and process engineering, Covina, CAGoogle Scholar
  88. 88.
    Fu S-Y, Lauke B, Mäder E, Yue C-Y, Hu X (2000) Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos Part A 31(10):1117–1125CrossRefGoogle Scholar
  89. 89.
    Twardowski T, Geil P (1991) A highly fluorinated epoxy resin. III Behavior in composite and fiber-coating applications. J Appl Polym Sci 42(6):1721–1726CrossRefGoogle Scholar
  90. 90.
    Recker H, Altstadt V, Eberle W (1990) Toughened thermosets for damage tolerant carbon fiber reinforced composites. SAMPE J 26(2):73–78Google Scholar
  91. 91.
    Morgan P (2005) Carbon fibers and their composites. CRC Press, Boca RatonCrossRefGoogle Scholar
  92. 92.
    Morgan R, Jurek R, Larive D, Tung C, Donnellan T (1990) The toughening of Bismaleimides. Polym Mater Sci Eng 63:681–685Google Scholar
  93. 93.
    Wright W (1990) The carbon fibre/epoxy resin interphase--a review. II. Composite Polymers 3(5):360–401Google Scholar
  94. 94.
    Fu X, Chung DD (1998) Strain-sensing concrete improved by carbon fiber surface treatment. In: 5th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, San Diego, p 53–63.  https://doi.org/10.1117/12.310620
  95. 95.
    Chung DD (2013) Composite materials: functional materials for modern technologies. Springer Science & Business Media, BerlinGoogle Scholar
  96. 96.
    Mochida I, Toshima H, Korai Y, Hino T (1989) Oxygen distribution in the mesophase pitch fibre after oxidative stabilization. J Mater Sci 24(2):389–394CrossRefGoogle Scholar
  97. 97.
    Barbier B, Pinson J, Desarmot G, Sanchez M (1990) Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. J Electrochem Soc 137(6):1757–1764CrossRefGoogle Scholar
  98. 98.
    Hong J, Harbison G (1990) Polym. Prepr.(am. Chem. Soc., div. Polym. Chem.). In: characterization of polymer order and dynamics using high-resolution solid-state NMRGoogle Scholar
  99. 99.
    Moyer RL (1976) Methods of making continuous length reinforced plastic articles. US Patent No 3,993,726Google Scholar
  100. 100.
    Ho M-p, Wang H, Lee J-H, Ho C-k, K-t L, Leng J, Hui D (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43(8):3549–3562CrossRefGoogle Scholar
  101. 101.
    Agarwal BD, Broutman LJ, Chandrashekhara K (2017) Analysis and performance of fiber composites. Wiley, HobokenGoogle Scholar
  102. 102.
    Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53CrossRefGoogle Scholar
  103. 103.
    Ružbarský J, Žarnovský J (2013) Optimization of parameters in the compression moulding process of thermoset products. In: Advanced Materials Research. Trans Tech Publ, Stafa-Zurich, pp 61–66Google Scholar
  104. 104.
    Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151CrossRefGoogle Scholar
  105. 105.
    Stabler WR, Tatterson GB, Sadler RL, El-Shiekh AH (1992) Void minimization in the manufacture of carbon fiber composites by resin transfer molding. SAMPE Quarterly. Society of Aerospace Material and Process Engineers, United States 23 (2)Google Scholar
  106. 106.
    Laurenzi S, Marchetti M (2012) Advanced composite materials by resin transfer molding for aerospace applications. INTECH Open Access Publisher, LondonCrossRefGoogle Scholar
  107. 107.
    Dickman O, Lindersson K, Svensson L (1990) Filament winding of thermoplastic matrix composites. Plast Rubb Proc Appl 13(1):9–14Google Scholar
  108. 108.
    Weiss R (1991) Fabrication techniques for thermoplastic composites. Cryogenics 31(4):319–322CrossRefGoogle Scholar
  109. 109.
    Lee Y, Porter RS (1988) Effects of thermal history on crystallization of poly (ether ether ketone)(PEEK). Macromolecules 21(9):2770–2776CrossRefGoogle Scholar
  110. 110.
    Karbhari V, Chin J, Hunston D, Benmokrane B, Juska T, Morgan R, Lesko J, Sorathia U, Reynaud D (2003) Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure. J Compos Constr 7(3):238–247CrossRefGoogle Scholar
  111. 111.
    Grace NF, Singh S (2005) Durability evaluation of carbon fiber-reinforced polymer strengthened concrete beams: experimental study and design. ACI Struct J 102(1):40Google Scholar
  112. 112.
    Gutowski TGP (1997) Advanced composites manufacturing. Wiley, HobokenGoogle Scholar
  113. 113.
    Cogswell FN (2013) Thermoplastic aromatic polymer composites: a study of the structure, processing and properties of carbon fibre reinforced polyetheretherketone and related materials. Elsevier, AmsterdamGoogle Scholar
  114. 114.
    Jeronimidis G, Parkyn A (1988) Residual stresses in carbon fibre-thermoplastic matrix laminates. J Compos Mater 22(5):401–415CrossRefGoogle Scholar
  115. 115.
    Shi L, Tummala NR, Striolo A (2010) C12E6 and SDS surfactants simulated at the vacuum− water interface. Langmuir 26(8):5462–5474CrossRefGoogle Scholar
  116. 116.
    Iroh J, Bell J, Scola D (1990) Thermoplastic matrix composites by aqueous electrocopolymerization onto graphite fibers. J Appl Polym Sci 41(3–4):735–749CrossRefGoogle Scholar
  117. 117.
    Pickering SJ (2006) Recycling technologies for thermoset composite materials—current status. Compos Part A 37(8):1206–1215CrossRefGoogle Scholar
  118. 118.
    Turner T, Pickering S, Warrior N (2009) Development of high value composite materials using recycled carbon fibre. In: SAMPE’09 conference. SAMPE, Baltimore, MD, USAGoogle Scholar
  119. 119.
    Buckley JD, Edie DD (1993) Carbon-carbon materials and composites, vol 1254. William Andrew, NorwichGoogle Scholar
  120. 120.
    Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A 38(6):1525–1532CrossRefGoogle Scholar
  121. 121.
    He P, Jia D, Lin T, Wang M, Zhou Y (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram Int 36(4):1447–1453CrossRefGoogle Scholar
  122. 122.
    Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447CrossRefGoogle Scholar
  123. 123.
    Xu Y, Van Hoa S (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68(3):854–861CrossRefGoogle Scholar
  124. 124.
    Huettner W, Claes L (1990) Carbon based materials in medical applications. In: Carbon fibers filaments and composites. Springer, Berlin, pp 337–365CrossRefGoogle Scholar
  125. 125.
    Nash N, Young T, McGrail P, Stanley W (2015) Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites—a review. Mater Des 85:582–597CrossRefGoogle Scholar
  126. 126.
    Toldy A, Szolnoki B, Marosi G (2011) Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polym Degrad Stab 96(3):371–376CrossRefGoogle Scholar
  127. 127.
    Edie D (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4):345–362CrossRefGoogle Scholar
  128. 128.
    Huettner W, Weiss R (1990) High performance carbon fibre composites with thermoplastic matrices. In: Carbon fibers filaments and composites. Springer, Berlin, pp 221–243CrossRefGoogle Scholar
  129. 129.
    Ogihara S, Takeda N, Kobayashi S, Kobayashi A (1999) Effects of stacking sequence on microscopic fatigue damage development in quasi-isotropic CFRP laminates with interlaminar-toughened layers. Compos Sci Technol 59(9):1387–1398CrossRefGoogle Scholar
  130. 130.
    Miller AG, Lovell DT, Seferis JC (1994) The evolution of an aerospace material: influence of design, manufacturing and in-service performance. Compos Struct 27(1–2):193–206CrossRefGoogle Scholar
  131. 131.
    Chandra R, Singh S, Gupta K (1999) Damping studies in fiber-reinforced composites–a review. Compos Struct 46(1):41–51CrossRefGoogle Scholar
  132. 132.
    Shim HH, Kwon OK, Youn JR (1990) Friction and wear behavior of graphite fiber-reinforced composites. Polym Compos 11(6):337–341CrossRefGoogle Scholar
  133. 133.
    Shim HH, Kwon OK, Youn JR (1992) Effects of fiber orientation and humidity on friction and wear properties of graphite fiber composites. Wear 157(1):141–149CrossRefGoogle Scholar
  134. 134.
    Leng J, Lv H, Liu Y, Du S (2007) Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl Phys Lett 91(14):144105CrossRefGoogle Scholar
  135. 135.
    Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269CrossRefGoogle Scholar
  136. 136.
    Das TK, Bhawal P, Ganguly S, Mondal S, Remanan S, Ghosh S, Das NC (2018) Synthesis of hydroxyapatite nanorods and its use as a nanoreinforcement block for ethylene methacrylate copolymer matrix. Polym Bull.  https://doi.org/10.1007/s00289-018-2565-x
  137. 137.
    Chung D (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285CrossRefGoogle Scholar
  138. 138.
    Chung DD (2000) Materials for electromagnetic interference shielding. J Mater Eng Perform 9(3):350–354CrossRefGoogle Scholar
  139. 139.
    Reed R, Golda M (1997) Cryogenic composite supports: a review of strap and strut properties. Cryogenics 37(5):233–250CrossRefGoogle Scholar
  140. 140.
    Schramm R, Kasen M (1977) Cryogenic mechanical properties of boron-, graphite-, and glass-reinforced composites. Mater Sci Eng 30(3):197–204CrossRefGoogle Scholar
  141. 141.
    Liu W, Chen Z, Cheng X, Wang Y, Amankwa AR, Xu J (2016) Design and ballistic penetration of the ceramic composite armor. Compos Part B 84:33–40CrossRefGoogle Scholar
  142. 142.
    Van Acker K, Verpoest I, De Moor J, Duflou J-R, Dewulf W (2009) Lightweight materials for the automotive: environmental impact analysis of the use of composites. Rev Metal 106(12):541–546CrossRefGoogle Scholar
  143. 143.
    Hollaway L (2011) Thermoplastic–carbon fiber composites could aid solar-based power generation: possible support system for solar power satellites. J Compos Constr 15(2):239–247CrossRefGoogle Scholar
  144. 144.
    Lionetto F, Morillas MN, Pappadà S, Buccoliero G, Villegas IF, Maffezzoli A (2018) Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos Part A 104:32–40CrossRefGoogle Scholar
  145. 145.
    Holmes M (2014) Global carbon fibre market remains on upward trend. Reinf Plast 58(6):38–45CrossRefGoogle Scholar
  146. 146.
    Santos AL (2015) Estudo da modificação superficial de fibras de carbono por meio de tratamentos a plasma para o aumento da adesão na interface de compósitos fibra de carbono/PPS composites. 155 f. Thesis (Doctorate) - Universidade Estadual Paulista. Faculdade de Engenharia de Guaratinguetá. Google Scholar
  147. 147.
    Joshi SV, Drzal L, Mohanty A, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35(3):371–376CrossRefGoogle Scholar
  148. 148.
    Bekyarova E, Thostenson E, Yu A, Kim H, Gao J, Tang J, Hahn H, Chou T-W, Itkis M, Haddon R (2007) Multiscale carbon nanotube− carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(7):3970–3974CrossRefGoogle Scholar
  149. 149.
    Mouritz A, Bannister M, Falzon P, Leong K (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A 30(12):1445–1461CrossRefGoogle Scholar
  150. 150.
    Laurenzi S, Marchetti M (2012) Advanced composite materials by resin transfer molding for aerospace applications. In: Composites and their properties. InTech, LondonGoogle Scholar
  151. 151.
    LEE S, JONAS T, DISALVO G (1991) The beneficial energy and environmental impact of composite materials- An unexpected bonus. SAMPE J 27:19–25Google Scholar
  152. 152.
    Adeli H (1986) Artificial intelligence in structural engineering. Eng Anal 3(3):154–160CrossRefGoogle Scholar
  153. 153.
    Friedrich K (2016) Carbon fiber reinforced thermoplastic composites for future automotive applications. In: AIP Conference Proceedings, vol 1. AIP Publishing, Melville, p 020001Google Scholar
  154. 154.
    Jureczko M, Pawlak M, Mężyk A (2005) Optimisation of wind turbine blades. J Mater Process Technol 167(2–3):463–471CrossRefGoogle Scholar
  155. 155.
    Thomas L, Ramachandra M (2018) Advanced materials for wind turbine blade-a review. Mater Today 5 ((1):2635–2640CrossRefGoogle Scholar
  156. 156.
    Kumar KV, Safiulla M, Ahmed AK (2014) An experimental evaluation of Fiber reinforced polypropylene thermoplastics for aerospace applications. J Mech Eng 43(2):92–97CrossRefGoogle Scholar
  157. 157.
    Allred J (2007) Carbon-Fiber laminate musical instrument sound board. US Patent No 7,276,868Google Scholar
  158. 158.
    Seal EC (2017) Carbon Fiber guitar. U.S. Patent No. 9,171,528Google Scholar
  159. 159.
    Ono T, Miyakoshi S, Watanabe U (2002) Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards. Acoust Sci Technol 23(3):135–142CrossRefGoogle Scholar
  160. 160.
    Ono T, Isomura D (2004) Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards. Acoust Sci Technol 25(6):475–477CrossRefGoogle Scholar
  161. 161.
    Gay D, Hoa SV (2007) Composite materials: design and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  162. 162.
    Savage G (1991) Composite materials in formula 1 racing. Met Mater 7(10):617–624Google Scholar
  163. 163.
    Yeh C-H (1990) Fabrication method of a hollow racket made of carbon fiber. U.S. Patent No. 4,931,247Google Scholar
  164. 164.
    Nilsson F, Unge M (2016) Conductivity simulations of field-grading composites. J Phys D Appl Phys 49(33):335303CrossRefGoogle Scholar
  165. 165.
    Jang J-U, Park HC, Lee HS, Khil M-S, Kim SY (2018) Electrically and thermally conductive carbon fibre fabric reinforced polymer composites based on Nanocarbons and an in-situ Polymerizable cyclic Oligoester. Sci Rep 8(1):7659CrossRefGoogle Scholar
  166. 166.
    Das NC, Khastgir D, Chaki T, Chakraborty A (2000) Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos Part A 31(10):1069–1081Google Scholar
  167. 167.
    Das NC, Chaki T, Khastgir D, Chakraborty A (2001) Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends. Adv Polym Technol 20(3):226–236Google Scholar
  168. 168.
    Qu M, Nilsson F, Schubert DW (2018) Effect of filler orientation on the electrical conductivity of carbon Fiber/PMMA composites. Fibers 6(1):3CrossRefGoogle Scholar
  169. 169.
    Luo X, Chung D (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos Part B 30(3):227–231CrossRefGoogle Scholar
  170. 170.
    Ganguly S, Bhawal P, Ravindren R, Das NC (2018) Polymer nanocomposites for electromagnetic interference shielding: a review. J Nanosci Nanotechnol 18(11):7641–7669CrossRefGoogle Scholar
  171. 171.
    Bhawal P, Ganguly S, Das TK, Mondal S, Das NC (2018) Mechanically robust conductive carbon clusters confined ethylene methyl acrylate–based flexible composites for superior shielding effectiveness. Polym Adv Technol 29(1):95–110Google Scholar
  172. 172.
    Bhawal P, Ganguly S, Das TK, Mondal S, Choudhury S, Das NC (2018) Superior electromagnetic interference shielding effectiveness and electro-mechanical properties of EMA-IRGO nanocomposites through the in-situ reduction of GO from melt blended EMA-GO composites. Compos Part B 134:46–60Google Scholar
  173. 173.
    Mondal S, Das P, Ganguly S, Ravindren R, Remanan S, Bhawal P, Das TK, Das NC (2018) Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Compos Part A 107:447–460CrossRefGoogle Scholar
  174. 174.
    Park JB, Bronzino JD (2002) Biomaterials: principles and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  175. 175.
    Pendhari SS, Kant T, Desai YM (2008) Application of polymer composites in civil construction: a general review. Compos Struct 84(2):114–124CrossRefGoogle Scholar
  176. 176.
    Wu J, Chung D (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40(3):445–447CrossRefGoogle Scholar
  177. 177.
    Teng J, Yu T, Fernando D (2012) Strengthening of steel structures with fiber-reinforced polymer composites. J Constr Steel Res 78:131–143CrossRefGoogle Scholar
  178. 178.
    Bank LC (2006) Composites for construction: structural design with FRP materials. Wiley, HobokenCrossRefGoogle Scholar
  179. 179.
    Rezaei F, Yunus R, Ibrahim NA (2009) Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des 30(2):260–263CrossRefGoogle Scholar
  180. 180.
    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224CrossRefGoogle Scholar
  181. 181.
    Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65(15):2329–2343CrossRefGoogle Scholar
  182. 182.
    Muthukumar T, Aravinthan A, Lakshmi K, Venkatesan R, Vedaprakash L, Doble M (2011) Fouling and stability of polymers and composites in marine environment. Int Biodeterior Biodegrad 65(2):276–284.  https://doi.org/10.1016/j.ibiod.2010.11.012 CrossRefGoogle Scholar
  183. 183.
    Baier R, Meyer A, DePalma V, King R, Fornalik M (1983) Surface microfouling during the induction period. J Heat Transf 105(3):618–624CrossRefGoogle Scholar
  184. 184.
    Das TK, Ganguly S, Bhawal P, Mondal S, Das NC (2018) A facile green synthesis of silver nanoparticle-decorated hydroxyapatite for efficient catalytic activity towards 4-nitrophenol reduction. Res Chem Intermed 44(2):1189–1208CrossRefGoogle Scholar
  185. 185.
    Das TK, Ganguly S, Bhawal P, Remanan S, Mondal S, Das NC (2018) Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Appl Nanosci 8(1–2):173–186Google Scholar
  186. 186.
    Das TK, Bhawal P, Ganguly S, Mondal S, Das NC (2018) A facile green synthesis of amino acid boosted ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf Interface 13:79–91CrossRefGoogle Scholar
  187. 187.
    Das TK, Ganguly S, Bhawal P, Remanan S, Ghosh S, Das NC (2018) A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. J Environ Chem Eng 6(6):6989–7001CrossRefGoogle Scholar
  188. 188.
    Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36(3):159–175Google Scholar
  189. 189.
    Sawangphruk M, Suksomboon M, Kongsupornsak K, Khuntilo J, Srimuk P, Sanguansak Y, Klunbud P, Suktha P, Chiochan P (2013) High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J Mater Chem A 1(34):9630–9636CrossRefGoogle Scholar
  190. 190.
    An X, Ma J, Wang K, Zhan M (2016) Growth of silver nanowires on carbon fiber to produce hybrid/waterborne polyurethane composites with improved electrical properties. J Appl Polym Sci 133(9)Google Scholar
  191. 191.
    Bakis CE, Bank LC, Brown V, Cosenza E, Davalos J, Lesko J, Machida A, Rizkalla S, Triantafillou T (2002) Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Constr 6(2):73–87CrossRefGoogle Scholar
  192. 192.
    Dhand V, Mittal G, Rhee KY, Park S-J, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos Part B 73:166–180CrossRefGoogle Scholar
  193. 193.
    Carberry W (2009) Aerospace’s role in the development of the recycled carbon fibre supply chain. In: Carbon fibre recycling and reuse 2009 conference. IntertechPira, HamburgGoogle Scholar
  194. 194.
    Eedy DJ (1996) Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermatitis 35(6):362–363CrossRefGoogle Scholar
  195. 195.
    Muller J, Huaux F, Lison D (2006) Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 44(6):1048–1056CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations