Advertisement

2D bio-nanostructures fabricated by supramolecular self-assembly of protein, peptide, or peptoid

  • Weihong Zhang
  • Peng Yang
Review
  • 135 Downloads

Abstract

Biomolecular self-assembly is a promising strategy for fabricating two-dimensional (2D) nanostructures such as sheets, films, lattices, or membranes. In this paper, we summarize the recent development of 2D bio-nanostructures that are formed by supramolecular self-assembly of protein, peptide, or peptoid, respectively. Specific focus is given on the formation mechanisms and the structures as well as functionality of the 2D bio-nanostructures. Besides, some typical applications of 2D bio-nanostructures have been listed. At last, the potential research direction of 2D bio-nanostructures is discussed.

Graphical abstract

Recent developments of 2D bio-nanostructures formed by supramolecular self-assembly of protein, peptide, or peptoid are reviewed.

Keywords

2D materials Bio-nanostructures Amyloid assembly Protein Peptide/peptoid 

Notes

Funding information

P.Y. thanks the funding from the National Natural Science Foundation of China (Grant Nos. 51673112 and 21374057), the 111 Project (Grant No. B14041), and Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_14R33) as well as Open Project of State Key Laboratory of Supramolecular Structure and Materials (Grant No. sklssm201727). W. Z. thanks the support of Natural Science Basic Research Plan in Shaanxi Province (No. 2016JM5024), China Postdoctoral Science Foundation (No. 2014M560747), and Scientific Research Project of Xianyang Normal University (No. 13XSYK017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    You J, Li MJ, Ding BB, Wu XC, Li CX (2017) Crab chitin-based 2d soft nanomaterials for fully biobased electric devices. Adv Mater 29:1606895CrossRefGoogle Scholar
  2. 2.
    Liu W-D, Yang B (2017) Patterned surfaces for biological applications: a new platform using two dimensional structures as biomaterials. Chin Chem Lett 28:675–690CrossRefGoogle Scholar
  3. 3.
    Choi IY, Lee J, Ahn H, Lee J, Choi HC, Park MJ (2015) High-conductivity two-dimensional polyaniline nanosheets developed on ice surfaces. Angew Chem Int Ed 54:1–6CrossRefGoogle Scholar
  4. 4.
    Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer OMG, Terrones M, Wind W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926CrossRefGoogle Scholar
  5. 5.
    Fang Y, Lv Y, Tang J, Wu H, Jia D, Feng D, Kong B, Wang Y, Elzatahry AA, Al-Dahyan D, Zhang Q, Zheng G, Zhao D (2015) Growth of single-layered two-dimensional mesoporous polymer/ carbon films by self-assembly of monomicelles at the interfaces of various substrates. Angew Chem Int Ed 127:8545–8549CrossRefGoogle Scholar
  6. 6.
    Zhang WH, Jiang BJ, Yang P (2016) Proteins as functional interlayer in organic field-effect transistor. Chin Chem Lett 27:1339–1344CrossRefGoogle Scholar
  7. 7.
    Wei T, Zhan WJ, Cao LM, Hu CM, Qu YC, Yu Q, Chen H (2016) Multifunctional and regenerable antibacterial surfaces fabricated by a universal strategy. ACS Appl Mater Interfaces 8:30048–30057CrossRefGoogle Scholar
  8. 8.
    Cao LM, Qu YC, Hu CM, Wei T, Zhan WJ, Y Q CH (2016) A universal and versatile approach for surface biofunctionalization: layer-by-layer assembly meets host–guest chemistry. Adv Mater Interfaces 3:1600600CrossRefGoogle Scholar
  9. 9.
    Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R (2017) Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 46:4661–4708CrossRefGoogle Scholar
  10. 10.
    Dohno C, Makishi S, Nakatani K, Contera S (2017) Amphiphilic DNA tiles for controlled insertion and 2D assembly on fluid lipid membranes: effect on mechanical properties. Nanoscale 9:3051–3058CrossRefGoogle Scholar
  11. 11.
    Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890CrossRefGoogle Scholar
  12. 12.
    Moll D, Huber C, Schlegel B, Pum D, Sleytr UB, Sára M (2002) S-layer-streptavidin fusion proteins as template for nanopatterned molecular arrays. Proc Natl Acad Sci 99:14646–14651CrossRefGoogle Scholar
  13. 13.
    Wang XY, Wang DB, Zhang ZP, Bi LJ, Zhang JB, Ding W, Zhang XE (2015) A S-layer protein of bacillus anthracis as a building block for functional protein arrays by in vitro self-assembly. Small 11:5826–5832CrossRefGoogle Scholar
  14. 14.
    Rad B, Haxton TK, Shon A, Shin S-H, Whitelam S, Ajo-Franklin CM (2015) Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS Nano 9:180–190CrossRefGoogle Scholar
  15. 15.
    Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F (2015) Designing two-dimensional protein arrays through fusion of multimers and interface mutations. Nano Lett 15:5235–5239CrossRefGoogle Scholar
  16. 16.
    Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382CrossRefGoogle Scholar
  17. 17.
    Brodin JD, Carr JR, Sontz PA, Tezcan FA (2014) Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Proc Natl Acad Sci 111:2897–2902CrossRefGoogle Scholar
  18. 18.
    Bai YS, Luo Q, Zhang W, Miao L, Xu JY, Li HB, Liu JQ (2013) Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly. J Am Chem Soc 135:10966–10969CrossRefGoogle Scholar
  19. 19.
    Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5:204–207CrossRefGoogle Scholar
  20. 20.
    Yang P (2012) Direct biomolecule binding on nonfouling surfaces via newly discovered supramolecular self-assembly of lysozyme under physiological conditions. Macromol Biosci 12:1053–1059CrossRefGoogle Scholar
  21. 21.
    Wu ZF, Yang P (2014) Simple multipurpose surface functionalization by phase transited protein adhesion. Adv Mater Interfaces 2:1400401CrossRefGoogle Scholar
  22. 22.
    Wu Q, Gao AT, Tao F, Yang P (2018) Understanding biomolecular crystallization on amyloid like superhydrophobic biointerface. Adv Mater Interfaces 5:1701065CrossRefGoogle Scholar
  23. 23.
    Gao AT, Wu Q, Wang DH, Ha Y, Chen ZJ, Yang P (2016) A superhydrophobic surface templated by protein self-assembly and emerging application toward protein crystallization. Adv Mater 28:579–587CrossRefGoogle Scholar
  24. 24.
    Wang DH, Ha Y, Gu J, Li Q, Zhang LL, Yang P (2016) 2D protein supramolecular nanofilm with exceptionally large area and emergent functions. Adv Mater 28:7414–7423CrossRefGoogle Scholar
  25. 25.
    Gu J, Miao ST, Yan ZG, Yang P (2018) Multiplex binding of amyloid-like protein nanofilm to different material surfaces. Colloid Interface Sci Commun 22:42–48CrossRefGoogle Scholar
  26. 26.
    Ha Y, Yang J, Tao F, Wu Q, Song YJ, Wang HR, Zhang X, Yang P (2018) Phase-transited lysozyme as a universal route to bioactive hydroxyapatite crystalline film. Adv Funct Mater 28:1704476CrossRefGoogle Scholar
  27. 27.
    Kim S, Marelli B, Brenckle MA, Mitropoulos AN, Gil E-S, Tsioris K, Tao H, Kaplan DL, Omenetto FG (2014) All-water-based electron-beam lithography using silk as a resist. Nat Nanotech 9:306–310CrossRefGoogle Scholar
  28. 28.
    Bolisetty S, Arcari M, Adamcik J, Mezzenga R (2015) Hybrid amyloid membranes for continuous flow catalysis. Langmuir 31:13867–13873CrossRefGoogle Scholar
  29. 29.
    Zhang SG, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci 90:3334–3338CrossRefGoogle Scholar
  30. 30.
    Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembled arginine-coated peptide nanosheets in water. Chem Commun 49:1850–1852CrossRefGoogle Scholar
  31. 31.
    Hamley IW, Hutchinson J, Kirkham S, Castelletto V, Kaur A, Reza M, Ruokolainen J (2016) Nanosheet formation by an anionic surfactant-like peptide, and modulation of self-assembly through ionic complexation. Langmuir 32(40):10387–10393CrossRefGoogle Scholar
  32. 32.
    Pan Y-X, Liu C-J, Zhang S, Yu Y, Dong MD (2012) 2D-oriented self-assembly of peptide induced by hydrated electrons. Chem Eur J 18:14614–14617CrossRefGoogle Scholar
  33. 33.
    Dai B, Li D, Xi WH, Luo F, Zhang X, Zou M, Cao M, Hu J, Wang WY, Wei GH, Zhang Y, Liu C (2015) Tunable assembly of amyloid-forming peptides into nanosheets as a retrovirus carrier. Proc Natl Acad Sci 112:2996–3001CrossRefGoogle Scholar
  34. 34.
    Jang H-S, Lee J-H, Park Y-S, Kim Y-O, Park J, Yang T-Y, Jin K, Lee J, Park S, You JM, Jeong K-W, Shin A, Oh I-S, Kwon M-K, Kim Y-I, Cho H-H, Han HN, Kim Y, Chang YH, Paik SR, Nam KT, Lee Y-S (2014) Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat Commun 5:3665CrossRefGoogle Scholar
  35. 35.
    Lee J, Choe IR, Kim N-K, Kim W-J, Jang H-S, Lee Y-S, Nam KT (2016) Water-floating giant nanosheets from helical peptide pentamers. ACS Nano 10:8263–8270CrossRefGoogle Scholar
  36. 36.
    Jiang T, Xu C, Liu Y, Liu Z, Wall JS, Zuo X, Lian T, Salaita K, Ni C, Pochan D, Conticello VP (2014) Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J Am Chem Soc 136:4300–4308CrossRefGoogle Scholar
  37. 37.
    Jiang T, Xu C, Zuo X, Conticello VP (2014) Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew Chem Int Ed 53:8367–8371CrossRefGoogle Scholar
  38. 38.
    Jiang T, Vail OA, Jiang ZG, Zuo XB, Conticello VP (2015) Rational design of multilayer collagen nanosheets with compositional and structural control. J Am Chem Soc 137:7793–7802CrossRefGoogle Scholar
  39. 39.
    Yu XL, Xiao JZ, Dang FQ (2015) Surface modification of poly (dimethylsiloxane) using ionic complementary peptides to minimize nonspecific protein adsorption. Langmuir 31:5891–5898CrossRefGoogle Scholar
  40. 40.
    Pan Y-X, Cong H-P, Men Y-L, Xin S, Sun Z-Q, Liu C-J, Yu S-H (2015) Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano 9:11258–11265CrossRefGoogle Scholar
  41. 41.
    Sun J, Zuckermann RN (2013) Peptoid polymers: a highly designable bioinspired material. ACS Nano 7:4715–4732CrossRefGoogle Scholar
  42. 42.
    Lau KHA (2014) Peptoids for biomaterials science. Biomater Sci 2:627–633CrossRefGoogle Scholar
  43. 43.
    Kirshenbaum K, Barron AE, Goldsmith RA, Armand P, Bradley EK, Truong KTV, Dill KA, Cohen FE, Zuckermann RN (1998) Sequence-specific polypeptoids: a diverse family of heteropolymers with stable secondary structure. Proc Natl Acad Sci 95:4303–4308CrossRefGoogle Scholar
  44. 44.
    Tran H, Gael SL, Connolly MD, Zuckermann RN (2011) Solid-phase submonomer synthesis of peptoid polymers and their self-assembly into highly-ordered nanosheets. J Vis Exp 57:1–7Google Scholar
  45. 45.
    Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee B-C, Connolly MD, Kisielowski C, Zuckermann RN (2010) Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat Mater 9:454–460CrossRefGoogle Scholar
  46. 46.
    Jin H, Jiao F, Daily MD, Chen Y, Yan F, Ding Y, Zhang X, Robertson EJ, Baer MD, Chen C (2016) Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nat Commun 7:12252CrossRefGoogle Scholar
  47. 47.
    Jiao F, Chen Y, Jin H, He P, Chen C-L, Yoreo JJD (2016) Self-repair and patterning of 2D membrane-like peptoid materials. Adv Funct Mater 26:8960–8967CrossRefGoogle Scholar
  48. 48.
    Shi ZK, Wei YH, Zhu CH, Sun J, Li ZB (2018) Crystallization-driven two-dimensional nanosheet from hierarchical self-assembly of polypeptoid-based diblock copolymers. Macromolecules 51(16):6344–6351CrossRefGoogle Scholar
  49. 49.
    Sanii B, Kudirka R, Cho A, Venkateswaran N, Olivier GK, Olson AM, Tran H, Harada RM, Tan L, Zuckermann RN (2011) Shaken, not stirred: collapsing a peptoid monolayer to produce free-floating, stable nanosheets. J Am Chem Soc 133:20808–20815CrossRefGoogle Scholar
  50. 50.
    Kudirka R, Tran H, Sanii B, Nam KT, Choi PH, Venkateswaran N, Chen R, Whitelam S, Zuckermann RN (2011) Folding of a single-chain, information-rich polypeptoid sequence into a highly ordered nanosheet. Pept Sci 96:586–595CrossRefGoogle Scholar
  51. 51.
    Robertson EJ, Olivier GK, Qian M, Proulx C, Zuckermann RN, Richmond GL (2014) Assembly and molecular order of two-dimensional peptoid nanosheets through the oil–water interface. Proc Natl Acad Sci 111:13284–13289CrossRefGoogle Scholar
  52. 52.
    Sanii B, Haxton TK, Olivier GK, Cho A, Barton B, Proulx C, Whitelam S, Zuckermann RN (2014) Structure-determining step in the hierarchical assembly of peptoid nanosheets. ACS Nano 8:11674–11684CrossRefGoogle Scholar
  53. 53.
    Battigelli A, Kim JH, Dehigaspitiya DC, Proulx C, Robertson EJ, Murray DJ, Rad B, Kirshenbaum K, Zuckermann RN (2018) Glycosylated peptoid nanosheets as a multivalent scaffold for protein recognition. ACS Nano 12(3):2455–2465CrossRefGoogle Scholar
  54. 54.
    Jun JMV, Altoe M, V P, Aloni S, Zuckermann RN (2015) Peptoid nanosheets as soluble, two-dimensional templates for calcium carbonate mineralization. Chem Commun 51:10218–10221CrossRefGoogle Scholar
  55. 55.
    Olivier GK, Cho A, Sanii B, Connolly MD, Tran H, Zuckermann RN (2013) Antibody-mimetic peptoid nanosheets for molecular recognition. ACS Nano 7:9276–9286CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Key Laboratory of Applied Surface and Colloids Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.College of Chemistry and Chemical EngineeringXianyang Normal UniversityXianyangChina

Personalised recommendations