Advertisement

Advanced Composites and Hybrid Materials

, Volume 1, Issue 4, pp 685–695 | Cite as

Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites

  • Xiaomeng FanEmail author
  • Xiaowei Yin
Review
  • 298 Downloads

Abstract

Continuous fiber-reinforced SiC matrix composites, as the most common ceramic matrix composites (CMCs), have been extensively studied in the last two decades due to low density, high strength at high temperatures, good corrosion resistance, and thermal shock resistance. Matrix modification is an effective way to obtain high-performance CMCs by the combination of tailored fiber, interphase, and matrix. This paper summarized the progress on SiC-based CMCs containing modified matrix, and the advantages brought by the hybrid matrices were revealed. For different application fields, different second phases were introduced into SiC matrix, such as B-containing phases to improve the oxidation resistance, ultra-high-temperature ceramics to improve the ablation resistance, and high electrical conductivity phases to improve the electromagnetic interference shielding properties and the phases with low complex permittivity to adjust the dielectric properties to improve the electromagnetic absorbing performance. With the formation of hybrid matrices by introducing second phases, it can essentially improve the environment performance and extend the application fields of SiC-based CMCs.

Graphical abstract

In order to obtain the multifunctional ceramic matrix composites (CMCs), various kinds of second phases were introduced to form hybrid matrices. Like the introduction of MAX phases, the modified CMCs not only have excellent strength and toughness, but also have excellent electromagnetic interference shielding properties.

Keywords

Ceramic matrix composites Hybrid matrices Structural and functional properties 

Notes

Funding information

The authors are grateful for the supports of the Natural Science Foundation of China (Project Nos. 51725205 and 51702261) and the 111 Project (B08040).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Evans AG (1990) Perspective on the development of high-toughness ceramics. J Am Ceram Soc 73:187–206CrossRefGoogle Scholar
  2. 2.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Technol 64:155–170CrossRefGoogle Scholar
  3. 3.
    Yin X, Cheng L, Zhang L et al (2017) Fibre-reinforced multifunctional SiC matrix composite materials. Int Mater Rev 62:117–172CrossRefGoogle Scholar
  4. 4.
    Krenkel W (2008) Ceramic matrix composites: fiber reinforced ceramics and their applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, p 2008CrossRefGoogle Scholar
  5. 5.
    Christin F (2002) Design, fabrication and application of thermostructural composites (TSC) like C/C, C/SiC and SiC/SiC composites. Adv Eng Mater 4:903–912CrossRefGoogle Scholar
  6. 6.
    Evans AG (1994) The physics and mechanics of fibre-reinforced brittle matrix composites. J Mater Sci 29:3857–3896CrossRefGoogle Scholar
  7. 7.
    Glass DE (2008) Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference, Dayton, pp 1–36Google Scholar
  8. 8.
    Lamouroux F, Bertrand S, Pailler R, Naslain R, Cataldi M (1999) Oxidation-resistant carbon-fiber-reinforced ceramic-matrix composites. Compos Sci Technol 59:1073–1085CrossRefGoogle Scholar
  9. 9.
    Li M, Zhou X, Yang H et al (2018) The critical issues of SiC materials for future nuclear systems. Scr Mater 143:149–153CrossRefGoogle Scholar
  10. 10.
    Pi H, Fan S, Wang Y (2012) C/SiC-ZrB2-ZrC composites fabricated by reactive melt infiltration with ZrSi2 alloy. Ceram Int 38:6541–6548CrossRefGoogle Scholar
  11. 11.
    Tang S, Deng J, Wang S et al (2009) Comparison of thermal and ablation behaviors of C/SiC composites and C/ZrB2-SiC composites. Corros Sci 51:54–61CrossRefGoogle Scholar
  12. 12.
    Naslain R, Guette A, Rebillat F et al (2004) Boron-bearing species in ceramic matrix composites for long-term aerospace applications. J Solid State Chem 177:449–456CrossRefGoogle Scholar
  13. 13.
    Fan X, Yin X, Cao X et al (2015) Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration. Compos Sci Technol 115:21–27CrossRefGoogle Scholar
  14. 14.
    Cao X, Yin X, Fan X et al (2014) Effect of PyC interphase thickness on mechanical behaviors of SiBC matrix modified C/SiC composites fabricated by reactive melt infiltration. Carbon 77:886–895CrossRefGoogle Scholar
  15. 15.
    Fan X, Yin X, Chen L et al (2016) Mechanical behavior and electromagnetic interference shielding properties of C/SiC-Ti3Si(Al)C2. J Am Ceram Soc 99:1717–1724CrossRefGoogle Scholar
  16. 16.
    Shi F, Yin X, Fan X et al (2010) A new route to fabricate SiB4 modified C/SiC composites. J Eur Ceram Soc 30:1955–1962CrossRefGoogle Scholar
  17. 17.
    Tong C, Cheng L, Yin X et al (2008) Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores. Compos Sci Technol 68:602–607CrossRefGoogle Scholar
  18. 18.
    Ruggles-Wrenn M, Delapasse J, Chamberlain AL et al (2012) Fatigue behavior of a Hi-Niclaon™/SiC-B4C composite at 1200 °C in air and in steam. Mater Sci Eng A 534:119–128CrossRefGoogle Scholar
  19. 19.
    Viricelle JP, Goursat P, Bahloul-Hourlier D (2001) Oxidation behaviour of a multi-layered ceramic-matrix composite (SiC)f/C/(SiBC)m. Compos Sci Technol 61:607–614CrossRefGoogle Scholar
  20. 20.
    Wang Y, Xu Y, Wang Y et al (2010) Effects of TaC addition on the ablation resistance of C/SiC. Mater Lett 64:2068–2071CrossRefGoogle Scholar
  21. 21.
    Ma X, Yin X, Fan X et al (2018) Microstrucutre and properties of dense Tyranno-ZMI SiC/SiC containing Ti3Si(Al)C2 with plastic deformation toughening mechanism. J Eur Ceram Soc 38:1069–1078CrossRefGoogle Scholar
  22. 22.
    Li Q, Yin X, Zhang L et al (2016) Effects of SiC fibers on microwave absorption and electromagnetic interference shielding properties of SiCf/SiCN composites. Ceram Int 42:19237–19244CrossRefGoogle Scholar
  23. 23.
    Mu Y, Zhou W, Hu Y et al (2015) Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC-Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceram Soc 35:2991–3003CrossRefGoogle Scholar
  24. 24.
    Mei H, Cheng L (2009) Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms. Carbon 47:1034–1042CrossRefGoogle Scholar
  25. 25.
    Nie J, Xu Y, Zhang L et al (2008) Effect of stitch spacing on mechanical properties of carbon/silicon carbide composites. Compos Sci Technol 68:2425–2432CrossRefGoogle Scholar
  26. 26.
    Wei K, Cheng X, Mo F et al (2016) Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel. Mater Des 11:435–444CrossRefGoogle Scholar
  27. 27.
    Song Z, Cheng S, Zeng T et al (2015) Compressive behavior of C/SiC composite sandwich structure with stitched lattice core. Compos Part B 69:243–248CrossRefGoogle Scholar
  28. 28.
    Kumar S, Kushwaha J, Mondal S et al (2013) Fabrication and ablation testing of 4D C/C composite at 10 MW/m2 heat flux under a plasma arc heater. Mater Sci Eng A 566:102–111CrossRefGoogle Scholar
  29. 29.
    Naslain R (1998) The design of the fibre-matrix interfacial zone in ceramic matrix composites. Compos Part A 29:1145–1155CrossRefGoogle Scholar
  30. 30.
    Rebillat F, Lamon J, Guette A (2000) The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater 48:4609–4618CrossRefGoogle Scholar
  31. 31.
    Miller JH, Liaw PK, Landes JD (2001) Influence of fiber coating thickness on fracture behavior of continuous woven Nicalon® fabric-reinforced silicon-carbide matrix ceramic composites. Mater Sci Eng A 317:49–58CrossRefGoogle Scholar
  32. 32.
    Mei H, Bai Q, Sun Y et al (2013) The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses. Carbon 57:288–297CrossRefGoogle Scholar
  33. 33.
    Singh JP, Singh D, Sutaria M (1999) Ceramic composites: roles of fiber and interphase. Compos Part A 30:445–450CrossRefGoogle Scholar
  34. 34.
    Dong N, Xu Y, Cheng L et al (2003) Environmental simulation experiments of 3D-C/SiC composites with different PyC interfacial layers. J Mater Sci Technol 19:77–80Google Scholar
  35. 35.
    Prouhet S, Camus G, Labrugère C et al (1994) Mechanical characterization of Si-C(O) fiber/SiC (CVI) matrix composites with a BN-interphase. J Am Ceram Soc 77:649–656CrossRefGoogle Scholar
  36. 36.
    Fan X, Yin X, Wang L et al (2013) Processing, microstructure and ablation behavior of C/SiC-Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros Sci 74:98–105CrossRefGoogle Scholar
  37. 37.
    Ma Y, Yin X, Fan X et al (2018) Modification and toughening of 3D needled C/SiC composite by deformable MAX phase-based matrix. Mater Sci Eng A 712:397–405CrossRefGoogle Scholar
  38. 38.
    Sun X, Yin X, Fan X et al (2018) Oxidation resistance of SiC/SiC composites containing SiBC matrix fabricated by liquid silicon infiltration. J Eur Ceram Soc 38:479–485CrossRefGoogle Scholar
  39. 39.
    Cao X, Yin X, Ma X et al (2016) The microstructure and properties of SiC/SiC-based composites fabricated by low-temperature melt infiltration of Al-Si alloy. Ceram Int 42:10144–10150CrossRefGoogle Scholar
  40. 40.
    Aoki T, Ogasawara T (2015) Tyranno ZMI fiber/TiSi2-Si matrix composites for high-temperature structural applications. Compos Part A 76:102–109CrossRefGoogle Scholar
  41. 41.
    Aoki T, Ogasawara T, al OY (2014) Fabrication and properties of Si-Hf alloy melt-infiltrated Tyranno ZMI fiber/SiC-based matrix composites. Compos Part A 66:155–162CrossRefGoogle Scholar
  42. 42.
    Chen X, Dong S, Kan Y et al (2016) Microstructure and mechanical properties of three-dimensional Cf/SiC-ZrC-ZrB2 composites prepared by reactive melt infiltration method. J Eur Ceram Soc 36:3969–3976CrossRefGoogle Scholar
  43. 43.
    Calard V, Lamon J et al (2004) Failure of fiber bundles. Compos Sci Technol 64:701–710CrossRefGoogle Scholar
  44. 44.
    He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067CrossRefGoogle Scholar
  45. 45.
    He MY, Hutchinson JW (1989) Kinking of a crack out of an interface. J Appl Mech 56:270–278CrossRefGoogle Scholar
  46. 46.
    Yin X, Travitzky N, Greil P (2007) Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3-Al2O3 composites. J Am Ceram Soc 90:2128–2134CrossRefGoogle Scholar
  47. 47.
    Wang L, Yin X, Fan X et al (2014) Ti3Si(Al)C2-based ceramics fabricated by reactive melt infiltration with Al70Si30 alloy. J Eur Ceram Soc 34:1493–1499CrossRefGoogle Scholar
  48. 48.
    Yin X, He S, Zhang L et al (2010) Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide-titanium silicon carbide hybrid matrix composite. Mater Sci Eng A 527:835–841CrossRefGoogle Scholar
  49. 49.
    Windsheimer H, Travitzky N, Hofenauer A et al (2007) Laminated object manufacturing of preceramic-paper-derived Si-SiC composites. Adv Mater 19:4515–4519CrossRefGoogle Scholar
  50. 50.
    Barsoum MW, El-Raghy T (2001) The MAX phases: unique new carbide and nitride materials. Am Sci 89:334–343CrossRefGoogle Scholar
  51. 51.
    Liu Y, Zhang L, Cheng L et al (2008) Preparation and oxidation resistance of 2D C/SiC composites modified by partial boron carbide self-sealing matrix. Mater Sci Eng A 498:430–436CrossRefGoogle Scholar
  52. 52.
    Wang Z, Dong S, He P (2010) Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler. J Eur Ceram Soc 30:787–792CrossRefGoogle Scholar
  53. 53.
    Cao X, Yin X, Ma X et al (2015) Oxidation behavior of SiBC matrix modified C/SiC composites with different PyC interphase thickness. Ceram Int 41:1695–1700CrossRefGoogle Scholar
  54. 54.
    Squire TH, Marschall J (2010) Material property requirements for analysis and design of UHTC components in hypersonic applications. J Eur Ceram Soc 30:2239–2251CrossRefGoogle Scholar
  55. 55.
    Balat MJH (1996) Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air. J Eur Ceram Soc 16:55–62CrossRefGoogle Scholar
  56. 56.
    Tang S, Hu C (2017) Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J Mater Sci Technol 33:117–130CrossRefGoogle Scholar
  57. 57.
    Fahrenholtz WG, Hilmas GE, Talmy IG et al (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364CrossRefGoogle Scholar
  58. 58.
    Fahrenholtz WG, Hilmas GE (2016) Ultra-high temperature ceramics: materials for extreme environments. Scr Mater 16:112–143Google Scholar
  59. 59.
    Hu C, Pang S, Tang S et al (2014) Ablation and mechanical behavior of a sandwich-structured composite with an inner layer of Cf/SiC between two outer layers of Cf/SiC-ZrB2-ZrC. Corros Sci 80:154–163CrossRefGoogle Scholar
  60. 60.
    Zeng Y, Wang D, Xiong X et al (2017) Ablation-resistance carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3000 °C. Nat Commun 8:15836CrossRefGoogle Scholar
  61. 61.
    Zhou Y, He L, Lin Z et al (2013) Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. J Eur Ceram Soc 33:2831–2865CrossRefGoogle Scholar
  62. 62.
    Yin X, Kong L, Zhang L et al (2014) Electromagnetic properties of Si-C-N based ceramics and composites. Int Mater Rev 59:326–355Google Scholar
  63. 63.
    Chen L, Yin X, Fan X et al (2015) Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites. Carbon 95:10–19CrossRefGoogle Scholar
  64. 64.
    Jia Y, Li K, Xue L et al (2017) Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon 111:299–308CrossRefGoogle Scholar
  65. 65.
    Ding D, Shi Y, Wu Z et al (2013) Electromagnetic interference shielding and dielectric properties of SiCf/SiC composites containing pyrolytic carbon interphase. Carbon 60:538–561CrossRefGoogle Scholar
  66. 66.
    Mu Y, Zhou W, Wan F et al (2015) High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Compos Part A 77:195–203CrossRefGoogle Scholar
  67. 67.
    Dong N, Chen L, Yin X et al (2016) Fabrication and electromagnetic interference shielding effectiveness of Ti3Si(Al)C2 modified Al2O3/SiC composites. Ceram Int 42:9448–9454CrossRefGoogle Scholar
  68. 68.
    Shi S, Zhang L, Li J (2008) Ti3SiC2 material: an application for electromagnetic interference shielding. Appl Phys Lett 93:172903CrossRefGoogle Scholar
  69. 69.
    Tan Y, Luo H, Zhang H et al (2017) High-temperature electromagnetic interference shielding of layered Ti3AlC2 ceramics. Scr Mater 134:47–51CrossRefGoogle Scholar
  70. 70.
    Mei H, Han D, Xiao S et al (2016) Improvement of the electromagnetic shielding properties of C/SiC composites by electrophoretic deposition of carbon nanotube on carbon fibers. Carbon 109:149–153CrossRefGoogle Scholar
  71. 71.
    Wang H, Zhu D, Mu Y et al (2015) Effect of SiC/C preform densities on the mechanical and electromagnetic interference shielding properties of dual matrix SiC/C-SiC composites. Ceram Int 41:14094–14100CrossRefGoogle Scholar
  72. 72.
    Mu Y, Zhou W, Wang C et al (2014) Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process. Ceram Int 40:10037–10041CrossRefGoogle Scholar
  73. 73.
    Li X, Zhang L, Yin X et al (2010) Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic. Scr Mater 63:657–660CrossRefGoogle Scholar
  74. 74.
    Ding D, Luo F, Zhou W (2013) Effects of thermal oxidation on electromagnetic interference shielding properties of SiCf/SiC composites. Ceram Int 39:4281–4286CrossRefGoogle Scholar
  75. 75.
    Hu Y, Luo F, Yang Z et al (2017) Improvement dielectric and microwave properties of SiCf/SiC-AlPO4 composites prepared by precursor infiltration and pyrolysis process. J Alloys Compd 699:498–504CrossRefGoogle Scholar
  76. 76.
    Xue J, Yin X, Ye F et al (2017) Theoretical prediction and experimental verification on EMI shielding effectiveness of dielectric composites using complex permittivity. Ceram Int 43:16736–16743CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations