Advertisement

Advanced Composites and Hybrid Materials

, Volume 1, Issue 4, pp 649–684 | Cite as

Nanostructured hydrophobic polyampholytes: self-assembly, stimuli-sensitivity, and application

  • Sarkyt KudaibergenovEmail author
  • Joachim Koetz
  • Nurxat NurajeEmail author
Review
  • 509 Downloads

Abstract

This review is devoted to recent applications and fundamental aspects of hydrophobic polyampholytes—unique macromolecules containing acid, base, and hydrophobic groups that simulate the behavior of proteins, amphoteric polypeptides, or poly(nucleotides) in solutions. Attention was primarily focused on hydrophobically modified polyampholytes (HMPA), sometimes called hydrophobic polyampholytes or amphoteric “polysoaps.” The dependence of structural, morphological, hydrodynamic, and conformational properties of HMPA on external stimuli such as pH medium, temperature, ionic strength, water-organic solvents is outlined. This work demonstrates the self-assembly of HMPA into micelles, reverse micelles, vesicles, lamellar aggregates, dendrimers, fractal structures, clusters, and other highly organized matters. The self-organization of HMPA at air-liquid, liquid-liquid, and solid-liquid interphase is a key problem for designing Langmuir-Blodgett (LB), layer-by-layer (LbL) films and surface modifications. The preparation and characterization of metal nanoparticles stabilized by HMPA along with applications of HMPA-protected metal nanoparticles in catalysis are summarized. Recent research and applications include HMPA as an enhanced oil recovery (EOR) agent, pour point depressant (PPD), and wax inhibitor. Biomedical and agricultural applications of HMPA, including cryopreservation of living cells by hydrophobic polyampholytes in the clinical practice of reproductive medicine, are outlined. Thus, the systematic analysis of literature data regarding the characterization and application of HMPA inspires other researchers to take new directions and viewpoints on this exclusive and exciting subject.

Graphical abstract

Hydrophobically modified polyampholytes can be assembled to form various self-assembled structures which show potential applications in the different fields.

Keywords

Hydrophobically modified polyampholytes Self-assembly Stimuli-sensitivity Applications 

Notes

Acknowledgements

N.N. greatly acknowledges the financial support of ACSPRF (57095-DNI7). S.K. greatly acknowledges the financial support from the Ministry of Education and Science of the Republic of Kazakhstan (IRN AP05131003, 2018-2020).

We express our thanks to Mr. Jensen Skoczlas for proofreading.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Borsook H, MacFadyen DA (1930) The effect of isoelectric amino acids on the pH(+) of a phosphate buffer solution : a contribution in support of the "Zwitter Ion" hypothesis. J Gen Physiol 13(5):509–527CrossRefGoogle Scholar
  2. 2.
    Lowe AB, McCormick CL (2002) Synthesis and Solution Properties of Zwitterionic Polymers. Chem Rev 102(11):4177–4190.  https://doi.org/10.1021/cr020371t CrossRefGoogle Scholar
  3. 3.
    Laschewsky A (2014) Structures and Synthesis of Zwitterionic Polymers. Polymers 6(5):1544–1601.  https://doi.org/10.3390/polym6051544 CrossRefGoogle Scholar
  4. 4.
    Singh Paresh K, Singh Vinay K, Singh M (2007) Zwitterionic Polyelectrolytes: A Review. E-Polymers 7.  https://doi.org/10.1515/epoly.2007.7.1.335
  5. 5.
    He XY, Zhou WR, Xu XJ, Yang W (2013) Preparation and Application of Zwitterionic Polymers. Prog Chem 25(6):1023–1030Google Scholar
  6. 6.
    Bernards M, He Y (2014) Polyampholyte polymers as a versatile zwitterionic biomaterial platform. J Biomater Sci Polym Ed 25(14-15):1479–1488.  https://doi.org/10.1080/09205063.2014.938976 CrossRefGoogle Scholar
  7. 7.
    Liu Hongyan ZJ (2012) Biological Applications of Zwitterionic Polymers. Prog Chem 24(11):2187–2197Google Scholar
  8. 8.
    Ladenheim H, Morawetz H (1957) A new type of polyampholyte: Poly(4-vinyl pyridine betaine). J Polym Sci 26(113):251–254.  https://doi.org/10.1002/pol.1957.1202611319 CrossRefGoogle Scholar
  9. 9.
    Hart R, Timmerman D (1958) New polyampholytes: The polysulfobetaines. J Polym Sci 28(118):638–640.  https://doi.org/10.1002/pol.1958.1202811820 CrossRefGoogle Scholar
  10. 10.
    Perlmann GE, Katchalski E (1962) Conformation of Poly-L-methionine and Some of its Derivatives in Solution. J Am Chem Soc 84(3):452–457.  https://doi.org/10.1021/ja00862a026 CrossRefGoogle Scholar
  11. 11.
    Kudaibergenov SE (1999) Recent advances in the study of synthetic polyampholytes in solutions. Polymer Latexes - Epoxide Resins - Polyampholytes 144:115–197CrossRefGoogle Scholar
  12. 12.
    S. E. Kudaibergenov, E. A. Bekturov (2008) Polyampholytes, Enc. Polym. Sci. Techn. John Wiley InterscienceGoogle Scholar
  13. 13.
    Kudaibergenov SE (2002) Polyampholytes Synthesis, Characterization and Application. Kluwer Academic/Plenum Publishers.  https://doi.org/10.1007/978-1-4615-0627-0
  14. 14.
    Alfrey T, Morawetz H, Fitzgerald EB, Fuoss RM (1950) SYNTHETIC ELECTRICAL ANALOG OF PROTEINS1. J Am Chem Soc 72(4):1864–1864.  https://doi.org/10.1021/ja01160a532 CrossRefGoogle Scholar
  15. 15.
    Alfrey T, Morawetz H (1952) Amphoteric Polyelectrolytes. I. 2-Vinylpyridine—Methacrylic Acid Copolymers1,2. J Am Chem Soc 74(2):436–438.  https://doi.org/10.1021/ja01122a046 CrossRefGoogle Scholar
  16. 16.
    Alfrey T, Fuoss RM, Morawetz H, Pinner H (1952) Amphoteric Polyelectrolytes. II. Copolymers of Methacrylic Acid and Diethylaminoethyl Methacrylate1. J Am Chem Soc 74(2):438–441.  https://doi.org/10.1021/ja01122a047 CrossRefGoogle Scholar
  17. 17.
    Katchalsky A, Miller IR (1954) Polyampholytes. J Polym Sci 13(68):57–68.  https://doi.org/10.1002/pol.1954.120136805 CrossRefGoogle Scholar
  18. 18.
    Candau F, Joanny JF (1996) Polyampholytes (Properties in aqueous solution). In: Salamone JC (ed) Polymeric Materials Encyclopedia. CRC Press Boca Raton, New York, pp 5476–5488Google Scholar
  19. 19.
    J. C. Salamone, CC Tsai, A. C. Watterson and, A. P. Olson (1980) Novel ampholytic polymers. A new class of ionomer. Polymeric Amin Ammonium Salts:105–112Google Scholar
  20. 20.
    Salamone JC, Watterson AC, Hsu TD, Tsai CC, Mahmud MU (1977) Polymerization of vinylpyridinium salts. IX. Preparation of monomeric salt pairs. J Polym Sci Polym Lett Ed 15(8):487–491.  https://doi.org/10.1002/pol.1977.130150808 CrossRefGoogle Scholar
  21. 21.
    Salamone JC WCR (1987) In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Encyclopedia of Polymer Science and Engineering. Wiley, New York, pp. 514Google Scholar
  22. 22.
    Salamone JC (1996) Polymeric Materials Encyclopedia, Twelve Volume Set, vol 12. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Yang JH, John MS (1995) The conformation and dynamics study of amphoteric copolymers, P(sodium 2-methacryloyloxyethanesulfonate-co-2-methacryloyloxyethyltrimethylammonium iodide), using viscometry, 14N-, and 23Na-NMR. J Polym Sci A Polym Chem 33(15):2613–2621.  https://doi.org/10.1002/pola.1995.080331507 CrossRefGoogle Scholar
  24. 24.
    Kudaibergenov S, Jaeger W, Laschewsky A (2006) Polymeric Betaines: Synthesis, Characterization, and Application. In: Supramolecular Polymers Polymeric Betains Oligomers. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 157–224.  https://doi.org/10.1007/12_078
  25. 25.
    Johnston DS, Sanghera S, Pons M, Chapman D (1980) Phospholipid polymers—Synthesis and spectral characteristics. Biochim Biophys Acta Biomembr 602(1):57–69.  https://doi.org/10.1016/0005-2736(80)90289-8 CrossRefGoogle Scholar
  26. 26.
    Nakaya T, Li Y-J (1999) Phospholipid polymers. Prog Polym Sci 24(1):143–181.  https://doi.org/10.1016/S0079-6700(98)00015-X CrossRefGoogle Scholar
  27. 27.
    Hub H-H, Hupfer B, Koch H, Ringsdorf H (1980) Polymerizable Phospholipid Analogues—New Stable Biomembrane and Cell Models. Angew Chem Int Ed Engl 19(11):938–940.  https://doi.org/10.1002/anie.198009381 CrossRefGoogle Scholar
  28. 28.
    Ahlers M, Müller W, Reichert A, Ringsdorf H, Venzmer J (1990) Specific Interactions of Proteins with Functional Lipid Monolayers—Ways of Simulating Biomembrane Processes. Angew Chem Int Ed Engl 29(11):1269–1285.  https://doi.org/10.1002/anie.199012691 CrossRefGoogle Scholar
  29. 29.
    O'Brien DF, Whitesides TH, Klingbiel RT (1981) The photopolymerization of lipid-diacetylenes in bimolecular-layer membranes. J Polym Sci Polym Lett Ed 19(3):95–101.  https://doi.org/10.1002/pol.1981.130190302 CrossRefGoogle Scholar
  30. 30.
    Regen SL, Yamaguchi K, Samuel NKP, Singh M (1983) Polymerized-depolymerized vesicles. A reversible phosphatidylcholine-based membrane. J Am Chem Soc 105(20):6354–6355.  https://doi.org/10.1021/ja00358a050 CrossRefGoogle Scholar
  31. 31.
    Ehrlich G, Doty P (1954) Macro-ions. III. The Solution Behavior of a Polymeric Ampholyte1. J Am Chem Soc 76(14):3764–3777.  https://doi.org/10.1021/ja01643a053 CrossRefGoogle Scholar
  32. 32.
    Higgs PG, Joanny JF (1991) Theory of polyampholyte solutions. J Chem Phys 94(2):1543–1554.  https://doi.org/10.1063/1.460012 CrossRefGoogle Scholar
  33. 33.
    Kudaibergenov SE, Shayakhmetov SS, Rafikov SR, Bekturov EA ((1979)) On hydrodynamic properties of amphoteric copolymers. Doklady Academii Nauk USSR 246(1):147–149Google Scholar
  34. 34.
    Kudaibergenov SE, Shayakhmetov SS, Bekturov EA (1980) Hydrodynamic properties of polyampholytes based on 1,2,5-trimethyl-4-vinylethynylpiperidinol-4 and acrylic acid. Vysokomol Soedin B22:91–95Google Scholar
  35. 35.
    Puglia GP ((1992)) Solution properties of polymers. 1. A measure of the ionic strength dependence of polyampholyte solutions. Annu Tech Conf Soc Plast Eng:2280–2281Google Scholar
  36. 36.
    Zheng G-z, Meshitsuka G, Ishizu A (1994) Inter- and intra-molecular ionic interactions of polyampholyte: Carboxymethyl-2-diethylaminoethylcellulose. Polym Int 34(3):241–248.  https://doi.org/10.1002/pi.1994.210340301 CrossRefGoogle Scholar
  37. 37.
    Ali SA, Rasheed A, Wazeer MIM (1999) Synthesis and solution properties of a quaternary ammonium polyampholyte. Polymer 40(9):2439–2446.  https://doi.org/10.1016/S0032-3861(98)00448-0 CrossRefGoogle Scholar
  38. 38.
    Ezell RG, Gorman I, Lokitz B, Ayres N, McCormick CL (2006) Stimuli-responsive ampholytic terpolymers of N-acryloyl-valine, acrylamide, and (3-acrylamidopropyl)trimethylammonium chloride: Synthesis, characterization, and solution properties. J Polym Sci A Polym Chem 44(9):3125–3139.  https://doi.org/10.1002/pola.21408 CrossRefGoogle Scholar
  39. 39.
    Ezell RG, Gorman I, Lokitz B, Treat N, McConaughy SD, McCormick CL (2006) Polyampholyte terpolymers of amphoteric, amino acid-based monomers with acrylamide and (3-acrylamidopropyl)trimethyl ammonium chloride. J Polym Sci A Polym Chem 44(15):4479–4493.  https://doi.org/10.1002/pola.21543 CrossRefGoogle Scholar
  40. 40.
    Patrickios CS, Hertler WR, Abbott NL, Hatton TA (1994) Diblock, ABC triblock, and random methacrylic polyampholytes: synthesis by group transfer polymerization and solution behavior. Macromolecules 27(4):930–937.  https://doi.org/10.1021/ma00082a008 CrossRefGoogle Scholar
  41. 41.
    Asayama S, Nogawa M, Takei Y, Akaike T, Maruyama A (1998) Synthesis of Novel Polyampholyte Comb-Type Copolymers Consisting of a Poly(l-lysine) Backbone and Hyaluronic Acid Side Chains for a DNA Carrier. Bioconjug Chem 9(4):476–481.  https://doi.org/10.1021/bc970213m CrossRefGoogle Scholar
  42. 42.
    Ibraeva ZE, Hahn M, Jaeger W, Bimendina LA, Kudaibergenov SE (2004) Solution Properties and Complexation of Polyampholytes based on N,N-Dimethyldiallylammonium Chloride and Maleic Acid or Alkyl (Aryl) Derivatives of Maleamic Acids. Macromol Chem Phys 205(18):2464–2472.  https://doi.org/10.1002/macp.200400242 CrossRefGoogle Scholar
  43. 43.
    Deng LD, Zhai YL, Guo ST, Jin FM, Xie ZP, He XH, Dong AJ (2009) Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels. J Nanopart Res 11(2):365–374.  https://doi.org/10.1007/s11051-008-9391-2 CrossRefGoogle Scholar
  44. 44.
    Gao M, Gawel K, Stokke BT (2014) Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. Eur Polym J 53:65–74.  https://doi.org/10.1016/j.eurpolymj.2014.01.014 CrossRefGoogle Scholar
  45. 45.
    Su E, Okay O (2017) Polyampholyte hydrogels formed via electrostatic and hydrophobic interactions. Eur Polym J 88:191–204.  https://doi.org/10.1016/j.eurpolymj.2017.01.029 CrossRefGoogle Scholar
  46. 46.
    Bekturov EA, Kudaibergenov SE, Frolova VA, Khamzamulina RE, Schulz RC, Zöller J (1991) Complexation of poly(methacrylic acid)-block-poly(1-methyl-4-vinylpyridinium chloride) with surfactants and dye molecules in aqueous solution. Makromol Chem Rapid Commun 191(1):1329–1333.  https://doi.org/10.1002/marc.1991.030120108 CrossRefGoogle Scholar
  47. 47.
    Bekturov SEKEA ((1989)) Influence of the coil-globule confromational transition in polyampholytes on sorption and desorption of polyelectrolytes and human serum albumin. Vysokomol Soedin Ser A 31:2614–2617Google Scholar
  48. 48.
    Kudaibergenov SE, Tatykhanova GS, Klivenko AN (2016) Complexation of macroporous amphoteric cryogels based on N,N-dimethylaminoethyl methacrylate and methacrylic acid with dyes, surfactant, and protein. J Appl Polym Sci 133(32):43784–43789.  https://doi.org/10.1002/app.43784 CrossRefGoogle Scholar
  49. 49.
    Bekturov EA, Bimendina LA (1981) Interpolymer Complexes. Adv Polym Sci 43:100–147Google Scholar
  50. 50.
    Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes. Adv Polym Sci 45:1–119CrossRefGoogle Scholar
  51. 51.
    Kötz J, Kosmella S, Beitz T (2001) Self-assembled polyelectrolyte systems. Prog Polym Sci 26(8):1199–1232.  https://doi.org/10.1016/S0079-6700(01)00016-8 CrossRefGoogle Scholar
  52. 52.
    Kötz J (1996) Polyelectrolyte complexes. In: Polym. Mat. Encycl., vol 8. CRC Press, Boca Raton, New York, London, Tokyo, pp 5762–5771Google Scholar
  53. 53.
    Koetz J, Koepke H, Schmidt-Naake G, Zarras P, Vogl O (1996) Polyanion-polycation complex formation as a function of the position of the functional groups. Polymer 37(13):2775–2781.  https://doi.org/10.1016/0032-3861(96)87641-5 CrossRefGoogle Scholar
  54. 54.
    Philipp B, Dautzenberg H, Linow K-J, Kötz J, Dawydoff W (1989) Polyelectrolyte complexes — recent developments and open problems. Prog Polym Sci 14(1):91–172.  https://doi.org/10.1016/0079-6700(89)90018-X CrossRefGoogle Scholar
  55. 55.
    Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA (2011) Polyelectrolyte complexes: Bulk phases and colloidal systems. J Colloid Interface Sci 361(2):407–422.  https://doi.org/10.1016/j.jcis.2011.05.080 CrossRefGoogle Scholar
  56. 56.
    Kötz J, Hahn M, Philipp B, Bekturov EA, Kudaibergenov SE (1993) Inter- and intramolecular interactions in polyelectrolyte complex formation with polyampholytes. Makromol Chem 194(2):397–410.  https://doi.org/10.1002/macp.1993.021940203 CrossRefGoogle Scholar
  57. 57.
    Kötz J, Philipp B, Sigitov V, Kudaibergenov S, Bekturov EA (1988) Amphoteric character of polyelectrolyte complex particles as revealed by isotachophoresis and viscometry. Colloid Polym Sci 266(10):906–912.  https://doi.org/10.1007/BF01410845 CrossRefGoogle Scholar
  58. 58.
    Kudaibergenov SE, Nurgalieva DE, Bekturov EA, Shaikhutdinov EM, Nurkeeva ZS, Sigitov VB (1994) Study of polyampholyte hydrogels and interpenetrating polyelectrolyte networks based on 4-(but-3-en-1-ynyl)-1-methylpiperidin-4-ol. Macromol Chem Phys 195(9):3033–3038.  https://doi.org/10.1002/macp.1994.021950903 CrossRefGoogle Scholar
  59. 59.
    Wang H, Li W, Lu Y, Wang Z (1997) Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): Chitosan semi-interpenetrating polymer network. J Appl Polym Sci 65(8):1445–1450.  https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1445::AID-APP1>3.0.CO;2-G CrossRefGoogle Scholar
  60. 60.
    Mary P, Bendejacq DD, Labeau M-P, Dupuis P (2007) Reconciling Low- and High-Salt Solution Behavior of Sulfobetaine Polyzwitterions. J Phys Chem B 111(27):7767–7777.  https://doi.org/10.1021/jp071995b CrossRefGoogle Scholar
  61. 61.
    Monroy Soto VM, Galin JC (1984) Poly(sulphopropylbetaines): 2. Dilute solution properties. Polymer 25(2):254–262.  https://doi.org/10.1016/0032-3861(84)90334-3 CrossRefGoogle Scholar
  62. 62.
    Salamone JC, Volksen W, Olson AP, Israel SC (1978) Aqueous solution properties of a poly(vinyl imidazolium sulphobetaine). Polymer 19(10):1157–1162.  https://doi.org/10.1016/0032-3861(78)90064-2 CrossRefGoogle Scholar
  63. 63.
    Köberle P, Laschewsky A, Lomax TD (1991) Interactions of a zwitterionic polysoap and its cationic analog with inorganic salts. Makromol Chem Rapid Commun 12(7):427–433.  https://doi.org/10.1002/marc.1991.030120709 CrossRefGoogle Scholar
  64. 64.
    Arotçaréna M, Heise B, Ishaya S, Laschewsky A (2002) Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity. J Am Chem Soc 124(14):3787–3793.  https://doi.org/10.1021/ja012167d CrossRefGoogle Scholar
  65. 65.
    Maeda Y, Mochiduki H, Ikeda I (2004) Hydration Changes during Thermosensitive Association of a Block Copolymer Consisting of LCST and UCST Blocks. Macromol Rapid Commun 25(14):1330–1334.  https://doi.org/10.1002/marc.200400062 CrossRefGoogle Scholar
  66. 66.
    Flores JD, Xu X, Treat NJ, McCormick CL (2009) Reversible “Self-Locked” Micelles from a Zwitterion-Containing Triblock Copolymer. Macromolecules 42(14):4941–4945.  https://doi.org/10.1021/ma900517w CrossRefGoogle Scholar
  67. 67.
    Wischerhoff E, Badi N, Laschewsky A, Lutz J-F (2011) Smart Polymer Surfaces: Concepts and Applications in Biosciences. In: Börner HG, Lutz J-F (eds) Bioactive Surfaces. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–33.  https://doi.org/10.1007/12_2010_88 CrossRefGoogle Scholar
  68. 68.
    Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243.  https://doi.org/10.1039/C3CS35499G CrossRefGoogle Scholar
  69. 69.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113.  https://doi.org/10.1038/nmat2614 CrossRefGoogle Scholar
  70. 70.
    Raffa P, Wever DAZ, Picchioni F, Broekhuis AA (2015) Polymeric Surfactants: Synthesis, Properties, and Links to Applications. Chem Rev 115(16):8504–8563.  https://doi.org/10.1021/cr500129h CrossRefGoogle Scholar
  71. 71.
    Bekturov EA, Kudaibergenov SE (1989) Physico-chemical properties of polyampholytes in solutions. Makromol Chem Macromol Symp 26(1):281–295.  https://doi.org/10.1002/masy.19890260127 CrossRefGoogle Scholar
  72. 72.
    Bekturov EA, Kudaibergenov SE, Rafikov SR (1991) The properties of solutions and complex formation reactions of amphoteric polyelectrolytes. Russ Chem Rev 60(4):835–851CrossRefGoogle Scholar
  73. 73.
    Bekturov EA, Kudaibergenov SE, Rafikov SR (1990) SYNTHETIC POLYMERIC AMPHOLYTES IN SOLUTION. J Macromol Sci C 30(2):233–303.  https://doi.org/10.1080/07366579008050910 CrossRefGoogle Scholar
  74. 74.
    Ciferri A, Kudaibergenov S (2007) Natural and Synthetic Polyampholytes, 1. Macromol Rapid Commun 28(20):1953–1968.  https://doi.org/10.1002/marc.200700162 CrossRefGoogle Scholar
  75. 75.
    Kudaibergenov SE, Ciferri A (2007) Natural and Synthetic Polyampholytes, 2. Macromol Rapid Commun 28(20):1969–1986.  https://doi.org/10.1002/marc.200700197 CrossRefGoogle Scholar
  76. 76.
    Kudaibergenov SE (1996) Synthesis and characterization of polyampholyte hydrogels. Ber Bunsenges Phys Chem 100(6):1079–1082.  https://doi.org/10.1002/bbpc.19961000662 CrossRefGoogle Scholar
  77. 77.
    Kudaibergenov SE, Sigitov VB (1999) Swelling, Shrinking, Deformation, and Oscillation of Polyampholyte Gels Based on Vinyl 2-Aminoethyl Ether and Sodium Acrylate. Langmuir 15(12):4230–4235.  https://doi.org/10.1021/la981070a CrossRefGoogle Scholar
  78. 78.
    Kudaibergenov SE, Nuraje N, Khutoryanskiy VV (2012) Amphoteric nano-, micro-, and macrogels, membranes, and thin films. Soft Matter 8(36):9302–9321.  https://doi.org/10.1039/C2SM25766A CrossRefGoogle Scholar
  79. 79.
    Kudaibergenov S, Adilov Z, Berillo D, Tatykhanova G, Sadakbaeva Z, Galaev KAI (2012) Novel macroporous amphoteric gels: Preparation and characterization. Express Polym Lett 6:346–353.  https://doi.org/10.3144/expresspolymlett.2012.38 CrossRefGoogle Scholar
  80. 80.
    Tatykhanova GS, Sadakbayeva ZK, Berillo D, Galaev I, Abdullin KA, Adilov Z, Kudaibergenov SE (2012) Metal Complexes of Amphoteric Cryogels Based on Allylamine and Methacrylic Acid. Macromol Symp 317-318(1):7–17.  https://doi.org/10.1002/masy.201100065 CrossRefGoogle Scholar
  81. 81.
    Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932.  https://doi.org/10.1038/nmat3713 https://www.nature.com/articles/nmat3713#supplementary-information CrossRefGoogle Scholar
  82. 82.
    Ogawa K, Nakayama A, Kokufuta E (2003) Preparation and Characterization of Thermosensitive Polyampholyte Nanogels. Langmuir 19(8):3178–3184.  https://doi.org/10.1021/la0267185 CrossRefGoogle Scholar
  83. 83.
    Christodoulakis KE, Vamvakaki M (2010) Amphoteric Core−Shell Microgels: Contraphilic Two-Compartment Colloidal Particles. Langmuir 26(2):639–647.  https://doi.org/10.1021/la902231b CrossRefGoogle Scholar
  84. 84.
    Bradley M, Vincent B, Burnett G (2007) Biocompatible, Polyampholyte Microgel Particles. Aust J Chem 60(9):646–650.  https://doi.org/10.1071/CH07098 CrossRefGoogle Scholar
  85. 85.
    Rodríguez-Hernández J, Lecommandoux S (2005) Reversible Inside−Out Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers. J Am Chem Soc 127(7):2026–2027.  https://doi.org/10.1021/ja043920g CrossRefGoogle Scholar
  86. 86.
    Chen L, Chen T, Fang W, Wen Y, Lin S, Lin J, Cai C (2013) Synthesis and pH-Responsive “Schizophrenic” Aggregation of a Linear-Dendron-Like Polyampholyte Based on Oppositely Charged Polypeptides. Biomacromolecules 14(12):4320–4330.  https://doi.org/10.1021/bm401215w CrossRefGoogle Scholar
  87. 87.
    Iatridi Z, Tsitsilianis C (2013) pH responsive MWCNT-star terpolymer nanohybrids. Soft Matter 9(1):185–193.  https://doi.org/10.1039/C2SM27211C CrossRefGoogle Scholar
  88. 88.
    Tatykhanova GS, Klivenko AN, Kudaibergenova GM, Kudaibergenov SE (2016) Flow–Through Catalytic Rector Based on Macroporous Amphoteric Cryogels and Gold Nanoparticles. Macromol Symp 363(1):49–56.  https://doi.org/10.1002/masy.201500137 CrossRefGoogle Scholar
  89. 89.
    Zurick KM, Bernards M (2014) Recent biomedical advances with polyampholyte polymers. J Appl Polym Sci 131(6).  https://doi.org/10.1002/app.40069
  90. 90.
    Bekturov EA, Bakauova ZK (1986) Synthetic water-soluble polymers in solution. Hüthig & WepfGoogle Scholar
  91. 91.
    Oishi T, Yoshimura Y, Yamasaki H, Onimura K (2001) Synthesis and polymerization of methacrylate bearing a phosphorylcholine, analogous moiety. Polym Bull 47(2):121–126.  https://doi.org/10.1007/s002890170002 CrossRefGoogle Scholar
  92. 92.
    Anton P, Köberle P, Laschewsky A (1993) Recent developments in the field of micellar polymers. Makromol Chem 194(1):1–27.  https://doi.org/10.1002/macp.1993.021940101 CrossRefGoogle Scholar
  93. 93.
    Tsitsilianis C, Bossard F, Sfika V, Stavrouli N, Kiriy A, Gorodyska G, Minko S (2004) Multifunctional Double Hydrophilic Triblock Copolymer in Solution and on Surface. Polym Mater Sci Eng 90Google Scholar
  94. 94.
    McCormick CL, Kirkland SE, York AW (2006) Synthetic Routes to Stimuli-Responsive Micelles, Vesicles, and Surfaces via Controlled/Living Radical Polymerization. J Macromol Sci C 46(4):421–443.  https://doi.org/10.1080/15583720600945428 CrossRefGoogle Scholar
  95. 95.
    Fechner M, Kosmella S, Koetz J (2010) pH-dependent polyampholyte SDS interactions. J Colloid Interface Sci 345(2):384–391.  https://doi.org/10.1016/j.jcis.2010.01.092 CrossRefGoogle Scholar
  96. 96.
    Fechner M, Koetz J (2013) Polyampholyte/Surfactant Complexes at the Water–Air Interface: A Surface Tension Study. Langmuir 29(25):7600–7606.  https://doi.org/10.1021/la401576q CrossRefGoogle Scholar
  97. 97.
    Fechner M, Koetz J (2011) Polyampholyte−Surfactant Film Tuning in Reverse Microemulsions. Langmuir 27(9):5316–5323.  https://doi.org/10.1021/la200791k CrossRefGoogle Scholar
  98. 98.
    Kosmella S, Koetz J (2012) Polymer-modified w/o microemulsions - with tunable droplet-droplet interactions. Curr Opin Colloid Interface Sci 17(5):261–265.  https://doi.org/10.1016/j.cocis.2012.06.004 CrossRefGoogle Scholar
  99. 99.
    Note C, Koetz J, Wattebled L, Laschewsky A (2007) Effect of a new hydrophobically modified polyampholyte on the formation of inverse microemulsions and the preparation of gold nanoparticles. J Colloid Interface Sci 308(1):162–169.  https://doi.org/10.1016/j.jcis.2006.12.047 CrossRefGoogle Scholar
  100. 100.
    Note C, Ruffin J, Tiersch B, Koetz J (2007) The Influence of Polyampholytes on the Phase Behavior of Microemulsion Used as Template for the Nanoparticle Formation. J Dispers Sci Technol 28(1):155–164.  https://doi.org/10.1080/01932690600992217 CrossRefGoogle Scholar
  101. 101.
    Fechner M (2011) Synthetische Polyampholyte als pH-sensitive Komponente in selbstorganisierten Systeme zur Nanostrukturierung von Materialien. University of Potsdam, Potsdam, GermanyGoogle Scholar
  102. 102.
    Zhang X, Ma J, Yang S, Xu J (2013) “Schizophrenic” Micellization of Poly(Acrylic Acid)-B-Poly(2-Dimethylamino)Ethyl Methacrylate and Responsive Behavior of the Micelles. Soft Mater 11(4):394–402.  https://doi.org/10.1080/1539445X.2012.668867 CrossRefGoogle Scholar
  103. 103.
    Zhang X, Ma J, Yang S, Xu J (2011) 'Schizophrenic' micellisation of poly(acrylic acid)-b-poly(2-dimethylamino)ethyl methacrylate: From spherical to worm-like micelles. IET Micro Nano Lett 6(10):830–831.  https://doi.org/10.1049/mnl.2011.0451 CrossRefGoogle Scholar
  104. 104.
    Shrivastava S, Matsuoka H (2014) Photoresponsive Block Copolymer: Synthesis, Characterization, and Surface Activity Control. Langmuir 30(14):3957–3966.  https://doi.org/10.1021/la4049677 CrossRefGoogle Scholar
  105. 105.
    Han X, Xiong ZY, Zhang XX, Liu HL (2015) Multi-tunable self-assembled morphologies of stimuli-responsive diblock polyampholyte films on solid substrates. Soft Matter 11(11):2139–2146.  https://doi.org/10.1039/c5sm00025d CrossRefGoogle Scholar
  106. 106.
    Vasantha VA, Jana S, Lee SS-C, Lim C-S, Teo SL-M, Parthiban A, Vancso JG (2015) Dual hydrophilic and salt responsive schizophrenic block copolymers - synthesis and study of self-assembly behavior. Polym Chem 6(4):599–606.  https://doi.org/10.1039/C4PY01113A CrossRefGoogle Scholar
  107. 107.
    Xie X, Ma Y, Huang L, Cai M, Chen Y, Luo X (2015) Effect factors of micelle preparation for a pH-sensitive copolymer containing zwitterionic sulfobetaines. Colloids Surf A Physicochem Eng Asp 468:31–39.  https://doi.org/10.1016/j.colsurfa.2014.12.018 CrossRefGoogle Scholar
  108. 108.
    Ramireddy RR, Prasad P, Finne A, Thayumanavan S (2015) Zwitterionic amphiphilic homopolymer assemblies. Polym Chem 6(33):6083–6087.  https://doi.org/10.1039/C5PY00879D CrossRefGoogle Scholar
  109. 109.
    Jiménez ZA, Yoshida R (2015) Temperature Driven Self-Assembly of a Zwitterionic Block Copolymer That Exhibits Triple Thermoresponsivity and pH Sensitivity. Macromolecules 48(13):4599–4606.  https://doi.org/10.1021/acs.macromol.5b00769 CrossRefGoogle Scholar
  110. 110.
    Enomoto R, Khimani M, Bahadur P, S-i Y (2014) pH-responsive micelles and vesicles formed from a water-soluble schizophrenic diblock copolymer. J Taiwan Inst Chem Eng 45(6):3117–3123.  https://doi.org/10.1016/j.jtice.2014.04.013 CrossRefGoogle Scholar
  111. 111.
    Woodfield PA, Zhu Y, Pei Y, Roth PJ (2014) Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(pentafluorophenyl acrylate). Macromolecules 47(2):750–762.  https://doi.org/10.1021/ma402391a CrossRefGoogle Scholar
  112. 112.
    Koromilas ND, Lainioti GC, Oikonomou EK, Bokias G, Kallitsis JK (2014) Synthesis and self-association in dilute aqueous solution of hydrophobically modified polycations and polyampholytes based on 4-vinylbenzyl chloride. Eur Polym J 54:39–51.  https://doi.org/10.1016/j.eurpolymj.2014.02.009 CrossRefGoogle Scholar
  113. 113.
    An H, Lu C, Wang P, Li W, Tan Y, Xu K, Liu C (2011) A novel hydrophobically associating polyampholytes of poly(AM/AA/AMQC12): preparation, characterization, and solution properties. Polym Bull 67(1):141–158.  https://doi.org/10.1007/s00289-011-0465-4 CrossRefGoogle Scholar
  114. 114.
    Fan Y, Zhou W, Yasin A, Li H, Yang H (2015) Dual-responsive shape memory hydrogels with novel thermoplasticity based on a hydrophobically modified polyampholyte. Soft Matter 11(21):4218–4225.  https://doi.org/10.1039/C5SM00168D CrossRefGoogle Scholar
  115. 115.
    Chen H, Wang Z-M, Ye Z-B, Han L-J (2014) The solution behavior of hydrophobically associating zwitterionic polymer in salt water. J Appl Polym Sci 131(1).  https://doi.org/10.1002/app.39707
  116. 116.
    Quan H, Li Z, Huang Z (2016) Self-assembly properties of a temperature- and salt-tolerant amphoteric hydrophobically associating polyacrylamide. RSC Adv 6(54):49281–49288.  https://doi.org/10.1039/C6RA05779A CrossRefGoogle Scholar
  117. 117.
    Johnson KM, Fevola MJ, Lochhead RY, McCormick CL (2004) Hydrophobically modified acrylamide-based polybetaines. II. Interaction with surfactants in aqueous solution. J Appl Polym Sci 92(1):658–671.  https://doi.org/10.1002/app.13647
  118. 118.
    Murugaboopathy S, Matsuoka H (2015) Salt-dependent surface activity and micellization behaviour of zwitterionic amphiphilic diblock copolymers having carboxybetaine. Colloid Polym Sci 293(5):1317–1328.  https://doi.org/10.1007/s00396-015-3503-1 CrossRefGoogle Scholar
  119. 119.
    Che Y-J, Tan Y, Cao J, Xin H, Xu G-Y (2011) Synthesis and properties of hydrophobically modified acrylamide-based polysulfobetaines. Polym Bull 66(1):17–35.  https://doi.org/10.1007/s00289-010-0255-4 CrossRefGoogle Scholar
  120. 120.
    Ali SA (2012) Phase diagrams of urethanized polyvinyl alcohol with a series of hydrophobically modified pH-responsive polymers containing amino acid residues. Korean J Chem Eng 29(10):1426–1437.  https://doi.org/10.1007/s11814-012-0064-6 CrossRefGoogle Scholar
  121. 121.
    Ferruti P, Mauro N, Falciola L, Pifferi V, Bartoli C, Gazzarri M, Chiellini F, Ranucci E (2014) Amphoteric, Prevailingly Cationic L-Arginine Polymers of Poly(amidoamino acid) Structure: Synthesis, Acid/Base Properties and Preliminary Cytocompatibility and Cell-Permeating Characterizations. Macromol Biosci 14(3):390–400.  https://doi.org/10.1002/mabi.201300387 CrossRefGoogle Scholar
  122. 122.
    Casolaro M, Ito Y, Ishii T, Bottari S, Samperi F, Mendichi F (2008) Stimuli-responsive poly(ampholyte)s containing L-histidine residues: synthesis and protonation thermodynamics of methacrylic polymers in the free and in the cross-linked gel forms. Express Polym Lett 2:165–183.  https://doi.org/10.3144/expresspolymlett.2008.22 CrossRefGoogle Scholar
  123. 123.
    Ahmed S, Hayashi F, Nagashima T, Matsumura K (2014) Protein cytoplasmic delivery using polyampholyte nanoparticles and freeze concentration. Biomaterials 35(24):6508–6518.  https://doi.org/10.1016/j.biomaterials.2014.04.030 CrossRefGoogle Scholar
  124. 124.
    Yu V, Tanchuk BMY, Boiko VV (1982) Synthesis of comb-like polyampholytes and anomalous temperature dependence of their viscosity in aqueous solutions. UkrKhimZh 48:871–876Google Scholar
  125. 125.
    Tanchuk YV, Yablonko BM (1984) Intermolecular and hydrophobic interactions of comb-like polyampholytes in aqueous solution. Ukr Chem J 50:88–92Google Scholar
  126. 126.
    Bekturov EA, Ismagulova SS, Dzumadilov TK (1990) Complexation of poly(ethylene glycol) with lithium salts in solution. Makromol Chem 191(6):1329–1333.  https://doi.org/10.1002/macp.1990.021910612 CrossRefGoogle Scholar
  127. 127.
    Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343.  https://doi.org/10.1016/j.progpolymsci.2007.07.001 CrossRefGoogle Scholar
  128. 128.
    Smith AE, Xu X, Kirkland-York SE, Savin DA, McCormick CL (2010) “Schizophrenic” Self-Assembly of Block Copolymers Synthesized via Aqueous RAFT Polymerization: From Micelles to Vesicles†Paper number 143 in a series on Water-Soluble Polymers. Macromolecules 43(3):1210–1217.  https://doi.org/10.1021/ma902378k CrossRefGoogle Scholar
  129. 129.
    Chen LL, Zhang F, Chen T, Chen Y, Lin JP (2013) Synthesis and ph reversible aggregating behavior of poly (amino acid) based linear-dendron-like poly ampholyte, vol 013.  https://doi.org/10.3724/SP.J.1105.2013.12270
  130. 130.
    Iatridi Z, Tsitsilianis C (2011) pH responsive self assemblies from an An-core-(B-b-C)n heteroarm star block terpolymer bearing oppositely charged segments. Chem Commun 47(19):5560–5562.  https://doi.org/10.1039/C0CC05507G CrossRefGoogle Scholar
  131. 131.
    Secker C, Völkel A, Tiersch B, Koetz J, Schlaad H (2016) Thermo-Induced Aggregation and Crystallization of Block Copolypeptoids in Water. Macromolecules 49(3):979–985.  https://doi.org/10.1021/acs.macromol.5b02481 CrossRefGoogle Scholar
  132. 132.
    Bogomolova A, Secker C, Koetz J, Schlaad H (2017) Thermo-induced multistep assembly of double-hydrophilic block copolypeptoids in water. Colloid Polym Sci 295(8):1305–1312.  https://doi.org/10.1007/s00396-017-4044-6 CrossRefGoogle Scholar
  133. 133.
    Hara N, Ohashi H, Ito T, Yamaguchi T (2009) Reverse Response of an Ion-Recognition Polyampholyte to Specific Ion Signals at Different pHs. Macromolecules 42(4):980–986.  https://doi.org/10.1021/ma801936t CrossRefGoogle Scholar
  134. 134.
    Zhou Y-N, Zhang Q, Luo Z-H (2014) A Light and pH Dual-Stimuli-Responsive Block Copolymer Synthesized by Copper(0)-Mediated Living Radical Polymerization: Solvatochromic, Isomerization, and “Schizophrenic” Behaviors. Langmuir 30(6):1489–1499.  https://doi.org/10.1021/la402948s CrossRefGoogle Scholar
  135. 135.
    Berkovic G, Krongauz V, Weiss V (2000) Spiropyrans and Spirooxazines for Memories and Switches. Chem Rev 100(5):1741–1754.  https://doi.org/10.1021/cr9800715 CrossRefGoogle Scholar
  136. 136.
    Didukh AG, Koizhaiganova RB, Bimendina LA, Kudaibergenov SE (2004) Synthesis and characterization of novel hydrophobically modified polybetaines as pour point depressants. J Appl Polym Sci 92(2):1042–1048.  https://doi.org/10.1002/app.20075 CrossRefGoogle Scholar
  137. 137.
    Liu F, Eisenberg A (2003) Preparation and pH Triggered Inversion of Vesicles from Poly(acrylic Acid)-block-Polystyrene-block-Poly(4-vinyl Pyridine). J Am Chem Soc 125(49):15059–15064.  https://doi.org/10.1021/ja038142r CrossRefGoogle Scholar
  138. 138.
    Liu C, Hong B, Xu K, Zhang MY, An HY, Tan Y, Wang PX (2014) Synthesis and application of salt tolerance amphoteric hydrophobic associative flocculants. Polym Bull 71(12):3051–3065.  https://doi.org/10.1007/s00289-014-1237-8 CrossRefGoogle Scholar
  139. 139.
    Vasantha VA, Jana S, Parthiban A, Vancso JG (2014) Halophilic polysulfabetaines - synthesis and study of gelation and thermoresponsive behavior. RSC Adv 4(43):22596–22600.  https://doi.org/10.1039/C4RA00928B CrossRefGoogle Scholar
  140. 140.
    Ulrich S, Laguecir A, Stoll S (2005) Titration of hydrophobic polyelectrolytes using Monte Carlo simulations. J Chem Phys 122(9):094911.  https://doi.org/10.1063/1.1856923 CrossRefGoogle Scholar
  141. 141.
    Santos-Rosas R, Licea-Claveríe A, Arndt K-F (2006) Statistical copolymers of methacrylic acid derivatives with hydrophobic spacers and N,N’- dimethylaminoethylmethacrylate: New associating polyampholytes. J Mex Chem Soc 50(4):164–174Google Scholar
  142. 142.
    Lowe AB, Billingham NC, Armes SP (1998) Synthesis and Characterization of Zwitterionic Block Copolymers. Macromolecules 31(18):5991–5998.  https://doi.org/10.1021/ma980558f CrossRefGoogle Scholar
  143. 143.
    Strauss UP, Chiao YC (1986) Hydrophobic polyampholytes. Macromolecules 19(2):355–358.  https://doi.org/10.1021/ma00156a020 CrossRefGoogle Scholar
  144. 144.
    Takahashi A, Kawaguchi M (1982) The structure of macromolecules adsorbed on interfaces. In: Behavior of Macromolecules, Berlin, Heidelberg, 1982 // 1982. Springer Berlin Heidelberg, pp 1–65Google Scholar
  145. 145.
    Yeroshina S, Ibrayev NK, Kudaibergenov S Obtaining and properties of Langmuir-Blodgett films of amphiphilic polyampholyte activated by rhodamine dye. In: Atomic and Molecular Pulsed Lasers VI, 2006. International Society for Optics and Photonics, p 62630EGoogle Scholar
  146. 146.
    Yeroshina SA, Ibrayev NK, Kudaibergenov SE, Rullens F, Devillers M, Laschewsky A (2008) Spectroscopic properties of mixed Langmuir–Blodgett films of rhodamine dyes and poly(N,N-diallyl-N-octadecylamine-alt-maleic acid). Thin Solid Films 516(8):2109–2114.  https://doi.org/10.1016/j.tsf.2007.05.056 CrossRefGoogle Scholar
  147. 147.
    Seliverstova EV, Ibrayev NK, Shakhvorostov AV, Nuraje N, Kudaibergenov SE (2016) Physicochemical Properties of Hydrophobically Modified Polymeric Betaines and of Their Langmuir-Blodgett Films. Macromol Symp 363(1):36–48.  https://doi.org/10.1002/masy.201500145 CrossRefGoogle Scholar
  148. 148.
    Kodiyath R, Choi I, Patterson B, Tsitsilianis C, Tsukruk VV (2013) Interfacial behavior of pH responsive ampholytic heteroarm star block terpolymers. Polymer 54(3):1150–1159.  https://doi.org/10.1016/j.polymer.2012.12.031 CrossRefGoogle Scholar
  149. 149.
    Chen G, Wu G, Wang L, Zhang S, Su Z (2008) Layer-by-layer assembly of single-charged ions with a rigid polyampholyte. Chem Commun 0(15):1741–1743.  https://doi.org/10.1039/B801784K CrossRefGoogle Scholar
  150. 150.
    Tokuda Y, Miyagishima T, Tomida K, Wang B, Takahashi S, Sato K, Anzai J-i (2013) Dual pH-sensitive layer-by-layer films containing amphoteric poly(diallylamine-co-maleic acid). J Colloid Interface Sci 399:26–32.  https://doi.org/10.1016/j.jcis.2013.02.039 CrossRefGoogle Scholar
  151. 151.
    Wang BZ, Tokuda Y, Tomida K, Takahashi S, Sato K, Anzai J (2013) Use of Amphoteric Copolymer Films as Sacrificial Layers for Constructing Free-Standing Layer-by-Layer Films. Materials 6(6):2351–2359.  https://doi.org/10.3390/ma6062351 CrossRefGoogle Scholar
  152. 152.
    Wang X, Zhang L, Wang L, Sun J, Shen J (2010) Layer-by-Layer Assembled Polyampholyte Microgel Films for Simultaneous Release of Anionic and Cationic Molecules. Langmuir 26(11):8187–8194.  https://doi.org/10.1021/la904558h CrossRefGoogle Scholar
  153. 153.
    Kharlampieva E, Izumrudov VA, Sukhishvili SA (2007) Electrostatic Layer-by-Layer Self-Assembly of Poly(carboxybetaine)s: Role of Zwitterions in Film Growth. Macromolecules 40(10):3663–3668.  https://doi.org/10.1021/ma062811e CrossRefGoogle Scholar
  154. 154.
    Note C, Kosmella S, Koetz J (2006) Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids Surf A Physicochem Eng Asp 290(1):150–156.  https://doi.org/10.1016/j.colsurfa.2006.05.018 CrossRefGoogle Scholar
  155. 155.
    Shan J, Tenhu H (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun (44):4580–4598.  https://doi.org/10.1039/B707740H
  156. 156.
    Bajpai S, Yallapu M, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of Polymer Stabilized Silver and Gold Nanostructures, vol 7.  https://doi.org/10.1166/jnn.2007.911
  157. 157.
    Note C, Koetz J, Kosmella S, Tiersch B (2005) Hydrophobically modified polyelectrolytes used as reducing and stabilizing agent for the formation of gold nanoparticles. Colloid Polym Sci 283:1334–1342.  https://doi.org/10.1007/s00396-005-1349-7 CrossRefGoogle Scholar
  158. 158.
    Li S, Wu Y, Wang J, Zhang Q, Kou Y, Zhang S (2010) Double-responsive polyampholyte as a nanoparticle stabilizer: application to reversible dispersion of gold nanoparticles. J Mater Chem 20(21):4379–4384.  https://doi.org/10.1039/C0JM00255K CrossRefGoogle Scholar
  159. 159.
    Chen G, Li S, Zhang X, Zhang S (2008) Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups. J Membr Sci 310(1):102–109.  https://doi.org/10.1016/j.memsci.2007.10.039 CrossRefGoogle Scholar
  160. 160.
    Mahltig B, Cheval N, Gohy JF, Fahmi A (2010) Preparation of gold nanoparticles under presence of the diblock polyampholyte PMAA-b-PDMAEMA. J Polym Res 17(4):579–588.  https://doi.org/10.1007/s10965-009-9346-z CrossRefGoogle Scholar
  161. 161.
    Ding Y, Xia X-H, Zhai H-S (2007) Reversible Assembly and Disassembly of Gold Nanoparticles Directed by a Zwitterionic Polymer. Chem Eur J 13(15):4197–4202.  https://doi.org/10.1002/chem.200601013 CrossRefGoogle Scholar
  162. 162.
    Raj G, Swalus C, Guillet A, Devillers M, Nysten B, Gaigneaux EM (2013) Supramolecular Organization in Organic–Inorganic Heterogeneous Hybrid Catalysts Formed from Polyoxometalate and Poly(ampholyte) Polymer. Langmuir 29(13):4388–4395.  https://doi.org/10.1021/la400055t CrossRefGoogle Scholar
  163. 163.
    Trandafilović LV, Djoković V, Bibić N, Georges MK, Radhakrishnan T (2008) Preparation and optical properties of CdS nanoparticles dispersed in poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers. Opt Mater 30(7):1208–1212.  https://doi.org/10.1016/j.optmat.2007.05.050 CrossRefGoogle Scholar
  164. 164.
    Trandafilović LV, Djoković V, Bibić N, Georges MK, Radhakrishnan T (2010) Confined growth of Ag2S semiconductor nanocrystals in the presence of PDMAEMA-co-AA polyampholyte co-polymer. Mater Lett 64(9):1123–1126.  https://doi.org/10.1016/j.matlet.2010.02.032 CrossRefGoogle Scholar
  165. 165.
    Trandafilović LV, Luyt AS, Bibić N, Dimitrijević-Branković S, Georges MK, Radhakrishnan T, Djoković V (2012) Formation of nano-plate silver particles in the presence of polyampholyte copolymer. Colloids Surf A Physicochem Eng Asp 414:17–25.  https://doi.org/10.1016/j.colsurfa.2012.08.010 CrossRefGoogle Scholar
  166. 166.
    Kudaibergenov S, Tatykhanova G (2013) Physico-chemical and catalytic properties of polymer-protected and hydrogel-immobilized gold, silver and palladium nanoparticles. Int J Biol Chem 6:40–49Google Scholar
  167. 167.
    Baygazieva EK, Yesmurzayeva NN, Tatykhanova GS, Mun GA, Khutoryanskiy VV, Kudaibergenov SE (2014) Polymer protected gold nanoparticles: synthesis, characterization and application in catalysis. Int J Biol Chem 7:14–23CrossRefGoogle Scholar
  168. 168.
    Kudaibergenov SE, Tatykhanova GS, Selenova BS (2016) Polymer Protected and Gel Immobilized Gold and Silver Nanoparticles in Catalysis. J Inorg Organomet Polym Mater 26(6):1198–1211.  https://doi.org/10.1007/s10904-016-0373-z CrossRefGoogle Scholar
  169. 169.
    Koga H, Kitaoka T (2011) One-step synthesis of gold nanocatalysts on a microstructured paper matrix for the reduction of 4-nitrophenol. Chem Eng J 168(1):420–425.  https://doi.org/10.1016/j.cej.2010.08.073 CrossRefGoogle Scholar
  170. 170.
    Lázaro Martínez JM, Rodríguez-Castellón E, Sánchez RMT, Denaday LR, Buldain GY, Campo Dall’ Orto V (2011) XPS studies on the Cu(I,II)–polyampholyte heterogeneous catalyst: An insight into its structure and mechanism. J Mol Catal A Chem 339(1):43–51.  https://doi.org/10.1016/j.molcata.2011.02.010 CrossRefGoogle Scholar
  171. 171.
    Sahiner N (2013) Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 38(9):1329–1356.  https://doi.org/10.1016/j.progpolymsci.2013.06.004 CrossRefGoogle Scholar
  172. 172.
    Sahiner N, Seven F (2014) The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 71:170–179.  https://doi.org/10.1016/j.energy.2014.04.031 CrossRefGoogle Scholar
  173. 173.
    Sahiner N, Yildiz S (2014) Preparation of superporous poly(4-vinyl pyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reactions. Fuel Process Technol 126:324–331.  https://doi.org/10.1016/j.fuproc.2014.05.025 CrossRefGoogle Scholar
  174. 174.
    Sahiner N, Seven F (2014) Energy and environmental usage of super porous poly(2-acrylamido-2-methyl-1-propan sulfonic acid) cryogel support. RSC Adv 4(45):23886–23897.  https://doi.org/10.1039/C4RA01386G CrossRefGoogle Scholar
  175. 175.
    Ajmal M, Demirci S, Siddiq M, Aktas N, Sahiner N (2015) Betaine microgel preparation from 2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide and its use as a catalyst system. Colloids Surf A Physicochem Eng Asp 486:29–37.  https://doi.org/10.1016/j.colsurfa.2015.09.028 CrossRefGoogle Scholar
  176. 176.
    Tatykhanova GS, Sadakbayeva ZK, Berillo D, Galaev I, Abdullin KA, Adilov Z, Kudaibergenov SE (2012) Metal Complexes of Amphoteric Cryogels Based on Allylamine and Methacrylic Acid. Macromol Symp 317-318(1):18–27.  https://doi.org/10.1002/masy.201100065 CrossRefGoogle Scholar
  177. 177.
    Klivenko ANTGS, Mun GA, Kudaibergenov S ((2015)) Synthesis and physicochemical properties of macroporous cryogels. Int J Biol Chem 8:52–60Google Scholar
  178. 178.
    Klivenko AN, Nurxat Nuraje GST, Kudaibergenov SE (2015) Hydrogenation of p-Nitrophenol by Gold Nanoparticles Immobilized within Macroporous Amphoteric Cryogel based on N,N-Dimethylaminoethyl Methacrylate and Methacrylic Acid. Bulletin of Karaganda State University, Ser KhimGoogle Scholar
  179. 179.
    Veerakumar P, Velayudham M, Lu K-L, Rajagopal S (2012) Polyelectrolyte encapsulated gold nanoparticles as efficient active catalyst for reduction of nitro compounds by kinetic method. Appl Catal A Gen 439-440:197–205.  https://doi.org/10.1016/j.apcata.2012.07.008 CrossRefGoogle Scholar
  180. 180.
    Hagen J (2006) Industrial Catalysis A Practical Approach. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, GermanyGoogle Scholar
  181. 181.
    Schulze N, Koetz J (2017) Kinetically controlled growth of gold nanotriangles in a vesicular template phase by adding a strongly alternating polyampholyte. J Dispers Sci Technol 38(8):1073–1078.  https://doi.org/10.1080/01932691.2016.1220318 CrossRefGoogle Scholar
  182. 182.
    Schulze N, Prietzel C, Koetz J (2016) Polyampholyte-mediated synthesis of anisotropic gold nanoplatelets. Colloid Polym Sci 294(8):1297–1304.  https://doi.org/10.1007/s00396-016-3890-y CrossRefGoogle Scholar
  183. 183.
    Schulze N, Appelhans D, Tiersch B, Koetz J (2014) Morphological transformation of vesicles into tubular structures by adding polyampholytes or dendritic glycopolymers. Colloids Surf A Physicochem Eng Asp 457:326–332.  https://doi.org/10.1016/j.colsurfa.2014.06.007 CrossRefGoogle Scholar
  184. 184.
    Liebig F, Thünemann AF, Koetz J (2016) Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases. Langmuir 32(42):10928–10935.  https://doi.org/10.1021/acs.langmuir.6b02662 CrossRefGoogle Scholar
  185. 185.
    Liebig F, Sarhan RM, Prietzel C, Reinecke A, Koetz J (2016) "Green" gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering. RSC Adv 6(40):33561–33568.  https://doi.org/10.1039/C6RA04808K CrossRefGoogle Scholar
  186. 186.
    Moya SE, Ilie A, Bendall JS, Hernandez-Lopez JL, Ruiz-García J, Huck WTS (2007) Assembly of Polyelectrolytes on CNTs by Van der Waals Interactions and Fabrication of LBL Polyelectrolyte/CNT Composites. Macromol Chem Phys 208(6):603–608.  https://doi.org/10.1002/macp.200600530 CrossRefGoogle Scholar
  187. 187.
    Romero G, Moya SE (2012) Soft matter engineering of carbon nanotubes: polyelectrolytes as tools for surface tailoring, self-organization and templation of hybrid nanostructures. Soft Matter 8(38):9727–9730.  https://doi.org/10.1039/C2SM25425E CrossRefGoogle Scholar
  188. 188.
    Grunlan JC, Liu L, Kim YS (2006) Tunable Single-Walled Carbon Nanotube Microstructure in the Liquid and Solid States Using Poly(acrylic acid). Nano Lett 6(5):911–915.  https://doi.org/10.1021/nl052486t CrossRefGoogle Scholar
  189. 189.
    Etika KC, Cox MA, Grunlan JC (2010) Tailored dispersion of carbon nanotubes in water with pH-responsive polymers. Polymer 51(8):1761–1770.  https://doi.org/10.1016/j.polymer.2010.02.024 CrossRefGoogle Scholar
  190. 190.
    Zhang Z-y, Xu X-c (2014) Wrapping carbon nanotubes with poly (sodium 4-styrenesulfonate) for enhanced adsorption of methylene blue and its mechanism. Chem Eng J 256:85–92.  https://doi.org/10.1016/j.cej.2014.06.020 CrossRefGoogle Scholar
  191. 191.
    Grunlan JC, Liu L, Regev O (2008) Weak polyelectrolyte control of carbon nanotube dispersion in water. J Colloid Interface Sci 317(1):346–349.  https://doi.org/10.1016/j.jcis.2007.08.057 CrossRefGoogle Scholar
  192. 192.
    Lee Y, Geckeler KE (2011) Polyampholyte-Wrapped Carbon Nanotubes: Preparation and Internalization by Embryonic Fibroblast Cells. Macromol Rapid Commun 32(19):1518–1525.  https://doi.org/10.1002/marc.201100226 CrossRefGoogle Scholar
  193. 193.
    Sankar RM, Seeni Meera KM, Samanta D, Jithendra P, Mandal AB, Jaisankar SN (2013) The pH-sensitive polyampholyte nanogels: Inclusion of carbon nanotubes for improved drug loading. Colloids Surf B: Biointerfaces 112:120–127.  https://doi.org/10.1016/j.colsurfb.2013.07.046 CrossRefGoogle Scholar
  194. 194.
    Yang J, Tang B, Qiu W, Zhang S (2012) Controlled dispersion and precipitation of carbon black by a pH-responsive polyampholyte containing amino groups and aryl sulfonates. Carbon 50(15):5621–5624.  https://doi.org/10.1016/j.carbon.2012.07.036 CrossRefGoogle Scholar
  195. 195.
    Soll S, Zhao Q, Weber J, Yuan J (2013) Activated CO2 Sorption in Mesoporous Imidazolium-Type Poly(ionic liquid)-Based Polyampholytes. Chem Mater 25(15):3003–3010.  https://doi.org/10.1021/cm4009128 CrossRefGoogle Scholar
  196. 196.
    Lei Y, Nuraje N, Yashkarova M, Kudaibergenov S (2012) Solar Fuels Harvesting from Carbon Dioxide Conversions, vol 2.  https://doi.org/10.2174/2210681211202020110
  197. 197.
    Teoh SK, Ravi P, Dai S, Tam KC (2005) Self-Assembly of Stimuli-Responsive Water-Soluble [60]Fullerene End-Capped Ampholytic Block Copolymer. J Phys Chem B 109(10):4431–4438.  https://doi.org/10.1021/jp045413r CrossRefGoogle Scholar
  198. 198.
    Ravi P, Dai S, Tam KC (2005) Synthesis and Self-Assembly of [60]Fullerene Containing Sulfobetaine Polymer in Aqueous Solution. J Phys Chem B 109(48):22791–22798.  https://doi.org/10.1021/jp053088h CrossRefGoogle Scholar
  199. 199.
    Wever DAZ, Picchioni F, Broekhuis AA (2011) Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution. Prog Polym Sci 36(11):1558–1628.  https://doi.org/10.1016/j.progpolymsci.2011.05.006 CrossRefGoogle Scholar
  200. 200.
    Rabiee A, Ershad-Langroudi A, Jamshidi H (2014) Polyacrylamide-based polyampholytes and their applications. Rev Chem Eng 30(5):501–519.  https://doi.org/10.1515/revce-2014-0004 CrossRefGoogle Scholar
  201. 201.
    McCormick CL, Johnson CB (1988) Water-soluble copolymers .29. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride - solution properties. Macromolecules 21(3):694–699.  https://doi.org/10.1021/ma00181a026 CrossRefGoogle Scholar
  202. 202.
    McCormick CL, Johnson CB (1988) Water-soluble polymers .28. Ampholytic copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with (2-acrylamido-2-methylpropyl)dimethylammonium chloride - synthesis and characterization. Macromolecules 21(3):686–693.  https://doi.org/10.1021/ma00181a025 CrossRefGoogle Scholar
  203. 203.
    McCormick CL, Salazar LC (1992) Water-soluble copolymers .43. Ampholytic copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate with 2-(acrylamido)-2-methylpropyl trimethylammonium chloride. Macromolecules 25(7):1896–1900.  https://doi.org/10.1021/ma00033a009 CrossRefGoogle Scholar
  204. 204.
    Kathmann EE, White LA, McCormick CL (1997) Water soluble polymers: 69. pH and electrolyte responsive copolymers of acrylamide and the zwitterionic monomer 4-(2-acrylamido-2-methylpropyldimethylammonio) butanoate: synthesis and solution behaviour. Polymer 38(4):871–878.  https://doi.org/10.1016/S0032-3861(96)00586-1 CrossRefGoogle Scholar
  205. 205.
    Kathmann EE, White LA, McCormick CL (1997) Water soluble polymers: 70. Effects of methylene versus propylene spacers in the pH and electrolyte responsiveness of zwitterionic copolymers incorporating carboxybetaine monomers. Polymer 38(4):879–886.  https://doi.org/10.1016/S0032-3861(96)00587-3 CrossRefGoogle Scholar
  206. 206.
    Kathmann EE, McCormick CL (1997) Water-soluble polymers .72. Synthesis and solution behavior of responsive copolymers of acrylamide and the zwitterionic monomer 6-(2-acrylamido-2-methylpropyldimethylammonio) hexanoate. J Polym Sci A Polym Chem 35(2):243–253.  https://doi.org/10.1002/(sici)1099-0518(19970130)35:2<243::aid-pola6>3.0.co;2-t CrossRefGoogle Scholar
  207. 207.
    Kathmann EEL, Davis DD, McCormick CL (1994) Water-soluble polymers .60. Synthesis and solution behavior of terpolymers of acrylic-acid, acrylamide, and the zwitterionic monomer 3- (2-acrylamido-2-methylpropyl)dimethylammonio -1-propanesulfonate. Macromolecules 27(12):3156–3161.  https://doi.org/10.1021/ma00090a007 CrossRefGoogle Scholar
  208. 208.
    Kathmann EE, McCormick CL (1997) Water-soluble polymers .71. pH responsive behavior of terpolymers of sodium acrylate, acrylamide, and the zwitterionic monomer 4-(2-acrylamido-2-methylpropanedimethylammonio)butanoate. J Polym Sci A Polym Chem 35(2):231–242.  https://doi.org/10.1002/(sici)1099-0518(19970130)35:2<231::aid-pola5>3.0.co;2-v CrossRefGoogle Scholar
  209. 209.
    McCormick CL, Blackmon KP, Elliott DL (1986) Water-soluble copolymers .13. Copolymers of acrylamide with sodium-3-acrylamido-3-methylbutanoate - solution properties. J Polym Sci A Polym Chem 24(10):2619–2634.  https://doi.org/10.1002/pola.1986.080241019 CrossRefGoogle Scholar
  210. 210.
    Ranka M, Brown P, Hatton TA (2015) Responsive Stabilization of Nanoparticles for Extreme Salinity and High-Temperature Reservoir Applications. ACS Appl Mater Interfaces 7(35):19651–19658.  https://doi.org/10.1021/acsami.5b04200 CrossRefGoogle Scholar
  211. 211.
    Gou SH, He Y, Ma YT, Luo S, Zhang Q, Jing D, Guo QP (2015) A water-soluble antimicrobial acrylamide copolymer containing sulfitobetaine for enhanced oil recovery. RSC Adv 5(64):51549–51558.  https://doi.org/10.1039/c5ra07495a CrossRefGoogle Scholar
  212. 212.
    Kujawa P, Rosiak JM, Selb J, Candau F (2000) Synthesis and Properties of Hydrophobically Modified Polyampholytes. Mol Cryst Liq Cryst Sci Technol Sect A 354(1):401–407.  https://doi.org/10.1080/10587250008023632 CrossRefGoogle Scholar
  213. 213.
    Kujawa P, Rosiak JM, Selb J, Candau F (2001) Micellar synthesis and properties of hydrophobically associating polyampholytes. Macromol Chem Phys 202(8):1384–1397.  https://doi.org/10.1002/1521-3935(20010501)202:8<1384::aid-macp1384>3.0.co;2-1 CrossRefGoogle Scholar
  214. 214.
    Nuraje NGI, Tatykhanova G, Akhmedzhanov T, Kudaibergenov S (2015) Alkaline/Surfactant/Polymer (ASP) Flooding. Int J Biol Chem 8:30–37CrossRefGoogle Scholar
  215. 215.
    Rui Liu WP, Hu J, Shang XP, Pan Y, Yan ZP (2014) Rheological Properties of Hydrophobically Associative Copolymers Prepared in a Mixed Micellar Method Based on Methacryloxyethyl-dimethyl Cetyl Ammonium Chloride as Surfmer. Int J Polym Sci 2014:1–14Google Scholar
  216. 216.
    Liu R, Pu W, Wang L, Chen Q, Li Z, Li Y, Li B (2015) Solution properties and phase behavior of a combination flooding system consisting of hydrophobically amphoteric polyacrylamide, alkyl polyglycoside and n-alcohol at high salinities. RSC Adv 5(86):69980–69989.  https://doi.org/10.1039/C5RA13865E CrossRefGoogle Scholar
  217. 217.
    Kudaibergenov SE, Bimendina LA, Yashkarova MG (2007) Preparation and Characterization of Novel Polymeric Betaines Based on Aminocrotonates. J Macromol Sci A 44(8):899–912.  https://doi.org/10.1080/10601320701407995 CrossRefGoogle Scholar
  218. 218.
    Shakhvorostov AV, Nurakhmetova ZA, Seilkhanov TM, Nuraje N, Kudaibergenov SE (2017) Self-assembly of hydrophobic polybetaine based on (tridecyl)aminocrotonate and methacrylic acid. Polym Sci Ser C 59(1):74–81.  https://doi.org/10.1134/S1811238217010167 CrossRefGoogle Scholar
  219. 219.
    Zhao X, Ravichandran A, Kudaibergenov S, Khare R, Nuraje N (2017) Synthesis of Hydrophobically Modified Polybetaines and Study of their self-assembly by molecular dynamics In: AIChE, MiniapolisGoogle Scholar
  220. 220.
    Zhappasbaev B, Gussenov I, Shakhvorostov A, Nuraje N, Kudaibergenov S (2016) Development of alkaline/surfactant/polymer (ASP) flooding technology for recovery of Karazhanbas oil. Chem Bull Kazakh National University 1:12–17CrossRefGoogle Scholar
  221. 221.
    Gou S, Luo S, Liu T, Zhao P, He Y, Pan Q, Guo Q (2015) A novel water-soluble hydrophobically associating polyacrylamide based on oleic imidazoline and sulfonate for enhanced oil recovery. New J Chem 39(10):7805–7814.  https://doi.org/10.1039/C5NJ01153A CrossRefGoogle Scholar
  222. 222.
    Kudaibergenov SE, Didukh AG, Ibraeva ZE, Bimendina LA, Rullens F, Devillers M, Laschewsky A (2005) A regular, hydrophobically modified polyampholyte as novel pour point depressant. J Appl Polym Sci 98(5):2101–2108.  https://doi.org/10.1002/app.22007 CrossRefGoogle Scholar
  223. 223.
    Shakhvorostov AV NZ, Tatykhanova GS, Kudaibergenov SE (2016) Materials of the 7th all-Russian conferenceference “recovery,processing,transportofoilandgas. RussiaGoogle Scholar
  224. 224.
    Zhappasbaev B, Shakhvorostov A, Kudaibergenov S (2016) ASP flooding is effective method of heavy oil recovery. Oil Gas J Kaz 4:53–64Google Scholar
  225. 225.
    Aldyyarov TK, Nasibullin M, Shakhvorostov AV, Kudaibergenov SE, Didukh AG, Gabsattarova GA (2015) Novel effective depressants to paraffiniс oils. Oil Gas J Kaz 5:141–151Google Scholar
  226. 226.
    Halim N, Ali S, Nadeem MN, Abdul Hamid P, Tan IM (2011) Synthesis of Wax Inhibitor and Assessment of Squeeze Technique Application for Malaysian Waxy Crude. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 2011/1/1/Google Scholar
  227. 227.
    Shakhvorostov A, Nurakhmetova Z, Tatykhanova G, Nuraje N, Kudaibergenov S (2015) Synthesis and characterization of hydrophobically modified polymeric betaines. Chem Bull Kazakh National University 3:10–20CrossRefGoogle Scholar
  228. 228.
    Xia Y, Gao M, Chen Y, Jia X, Liang D (2011) Mimic of Protein: A Highly pH-Sensitive and Thermoresponsive Polyampholyte. Macromol Chem Phys 212(20):2268–2274.  https://doi.org/10.1002/macp.201100352 CrossRefGoogle Scholar
  229. 229.
    Dubey A, Burke NAD, Stöver HDH (2015) Preparation and characterization of narrow compositional distribution polyampholytes as potential biomaterials: Copolymers of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and methacrylic acid (MAA). J Polym Sci A Polym Chem 53(2):353–365.  https://doi.org/10.1002/pola.27377 CrossRefGoogle Scholar
  230. 230.
    Stryer L (1988) Biochemistry. W.H.Freeman and Company, New YorkGoogle Scholar
  231. 231.
    Yamazaki Y, Nango M, Matsuura M, Hasegawa Y, Hasegawa M, Oku N (2000) Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine. Gene Ther 7:1148.  https://doi.org/10.1038/sj.gt.3301217 CrossRefGoogle Scholar
  232. 232.
    Park JS, Kim A, Jeong IC, Suh H, Shim YB, Kang SW ((1999)) Microdomain Formation in Phosphatidylethanolamine Bilayers Detected by NMR. Bull Kor Chem Soc 20:683–688Google Scholar
  233. 233.
    Geckeler K, Kudaibergenov S, Nepal D (2005) Process for preparing novel phospholipid-containing amphoteric polymer useful for the preparation of artificial lipid membrane. Korean Patent, 2005-148678/16Google Scholar
  234. 234.
    Xu J-P, Ji J, Chen W-D, Fan D-Z, Sun Y-F, Shen J-C (2004) Phospholipid based polymer as drug release coating for cardiovascular device. Eur Polym J 40(2):291–298.  https://doi.org/10.1016/j.eurpolymj.2003.09.015 CrossRefGoogle Scholar
  235. 235.
    Sitnikova TA, Rakhnyanskaya AA, Yaroslavova EG, Melik-Nubarov NS, Yaroslavov AA (2013) Physicochemical and biological properties of polyampholytes: Quaternized derivatives of poly(4-vinylpyridine). Polym Sci Ser A 55(3):163–170.  https://doi.org/10.1134/S0965545X13030061 CrossRefGoogle Scholar
  236. 236.
    Wang Q, Shen M, Zhao T, Xu Y, Lin J, Duan Y, Gu H (2015) Low toxicity and long circulation time of Polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Sci Rep 5:7774.  https://doi.org/10.1038/srep07774 CrossRefGoogle Scholar
  237. 237.
    Zhao T, Chen K, Gu H (2013) Investigations on the Interactions of Proteins with Polyampholyte-Coated Magnetite Nanoparticles. J Phys Chem B 117(45):14129–14135.  https://doi.org/10.1021/jp407157n CrossRefGoogle Scholar
  238. 238.
    Rajan R, Matsumura K (2015) A zwitterionic polymer as a novel inhibitor of protein aggregation. J Mater Chem B 3(28):5683–5689.  https://doi.org/10.1039/C5TB01021G CrossRefGoogle Scholar
  239. 239.
    Mitchell DE, Lilliman M, Spain SG, Gibson MI (2014) Quantitative study on the antifreeze protein mimetic ice growth inhibition properties of poly(ampholytes) derived from vinyl-based polymers. Biomater Sci 2(12):1787–1795.  https://doi.org/10.1039/C4BM00153B CrossRefGoogle Scholar
  240. 240.
    Matsumura K, Hyon S-H (2009) Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials 30(27):4842–4849.  https://doi.org/10.1016/j.biomaterials.2009.05.025 CrossRefGoogle Scholar
  241. 241.
    Matsumura K, Bae JY, Hyon SH (2010) Polyampholytes as Cryoprotective Agents for Mammalian Cell Cryopreservation. Cell Transplant 19(6-7):691–699.  https://doi.org/10.3727/096368910X508780 CrossRefGoogle Scholar
  242. 242.
    Matsumura K, Bae JY, Kim HH, Hyon SH (2011) Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-l-lysine. Cryobiology 63(2):76–83.  https://doi.org/10.1016/j.cryobiol.2011.05.003 CrossRefGoogle Scholar
  243. 243.
    Rajan R, Jain M, Matsumura K (2013) Cryoprotective properties of completely synthetic polyampholytes via reversible addition-fragmentation chain transfer (RAFT) polymerization and the effects of hydrophobicity. J Biomater Sci Polym Ed 24(15):1767–1780.  https://doi.org/10.1080/09205063.2013.801703 CrossRefGoogle Scholar
  244. 244.
    Watanabe H, Kohaya N, Kamoshita M, Fujiwara K, Matsumura K, Hyon SH, Ito J, Kashiwazaki N (2013) Efficient Production of Live Offspring from Mouse Oocytes Vitrified with a Novel Cryoprotective Agent, Carboxylated epsilon-poly-L-lysine. PLoS One 8(12).  https://doi.org/10.1371/journal.pone.0083613
  245. 245.
    Matsumura K, Hayashi F, Nagashima T, Hyon SH (2013) Long-term cryopreservation of human mesenchymal stem cells using carboxylated poly-l-lysine without the addition of proteins or dimethyl sulfoxide. J Biomater Sci Polym Ed 24(12):1484–1497.  https://doi.org/10.1080/09205063.2013.771318 CrossRefGoogle Scholar
  246. 246.
    Jain M, Rajan R, Hyon S-H, Matsumura K (2014) Hydrogelation of dextran-based polyampholytes with cryoprotective properties via click chemistry. Biomater Sci 2(3):308–317.  https://doi.org/10.1039/C3BM60261C CrossRefGoogle Scholar
  247. 247.
    Matsumura K, Kim H, Hyon S-H (2014) Hypothermicpreservation of Mouse Induced Pluripotent Stem Cells by Polyampholytes. Curr Nanosci 10(2):222–226CrossRefGoogle Scholar
  248. 248.
    Jain M, Matsumura K (2016) Thixotropic injectable hydrogel using a polyampholyte and nanosilicate prepared directly after cryopreservation. Mater Sci Eng C 69:1273–1281.  https://doi.org/10.1016/j.msec.2016.08.030 CrossRefGoogle Scholar
  249. 249.
    Das E, Matsumura K (2017) Tunable phase-separation behavior of thermoresponsive polyampholytes through molecular design. J Polym Sci A Polym Chem 55(5):876–884.  https://doi.org/10.1002/pola.28440 CrossRefGoogle Scholar
  250. 250.
    Polge C, Smith AU, Parkes AS (1949) Revival of Spermatozoa after Vitrification and Dehydration at Low Temperatures. Nature 164:666.  https://doi.org/10.1038/164666a0 CrossRefGoogle Scholar
  251. 251.
    Lovelock JE, Bishop MWH (1959) Prevention of Freezing Damage to Living Cells by Dimethyl Sulphoxide. Nature 183:1394–1395.  https://doi.org/10.1038/1831394a0 CrossRefGoogle Scholar
  252. 252.
    Rajan R, Hayashi F, Nagashima T, Matsumura K (2016) Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity. Biomacromolecules 17(5):1882–1893.  https://doi.org/10.1021/acs.biomac.6b00343

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Engineering ProfileK.I. Satpayev Kazakh National Research Technical UniversityAlmatyKazakhstan
  2. 2.Institute of Polymer Materials and TechnologyAlmatyKazakhstan
  3. 3.Department of ChemistryUniversity of PotsdamPotsdamGermany
  4. 4.Department of Chemical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations