Advertisement

Advanced Composites and Hybrid Materials

, Volume 1, Issue 4, pp 748–758 | Cite as

Optical and photoelectrochemical studies on photoactive inorganic/organic/organic/interface assemblies of CdS/poly 3-(2-thienyl) aniline/poly 2,2 bithiophene

  • Kasem K. KasemEmail author
  • Henry Worley
  • Mary Elmasry
Original Research
  • 157 Downloads

Abstract

Assemblies of poly 2,2 bithiophene, poly 3-(2-thienyl) aniline, and CdS were subjected to optical and photoelectrochemical investigation in acetate, citrate, and phosphate aqueous electrolytes. Optical conductivity and dielectric contents reflect the role of CdS on the optical properties of the assemblies. Occlusion of CdS into the organic polymer increased the electron diffusion coefficient and diffusion length by changing both the electron lifetime and electron transport time. O2 enhanced generated photocurrent in presence and in absence of a magnetic field. The magnetic field effects were explained on the basis that external magnetic fields affect the photogeneration of singlet/triplet radical pair processes. The recorded photoactivities indicate formation of hybrid sub-bands due to band alignments between each of the assembly components. The present study also shows that the use of electrolytes can affect the electron life-times at I/O/O/I and possible charge transfer processes.

Graphical abstract

Optical, photoelectrochemical properties of hybrid inorganic/organic interface assembly consists of CdS/PBTh/PThA. Effects of occluded CdS nanoparticles.

Keywords

Cadmium sulfide Photoelectrochemistry Photoactive interfaces Organic semiconductors Magnetic effects 

Notes

Acknowledgements

The authors acknowledge the Office of Academic Affairs at the Indiana University Kokomo for supporting this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Su C, Yang F, Ye Y, Xu L, Wang L, Zhang C (2013) Poly[tris(thienylphenyl) amine] derivatives as a performance-improved cathode material for lithium ion batteries. J Electrochem Soc 160(11):A2021–A2026CrossRefGoogle Scholar
  2. 2.
    Zhang M, Wu Z, Wang Q, Song Q, Ding Y (2010) Synthesis and properties of a new [60] fullerene-donor system containing dicyanovinyl groups. Mater Lett 64(20):2244–2246CrossRefGoogle Scholar
  3. 3.
    Shirota Y (2005) Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J Mater Chem 15:75–93CrossRefGoogle Scholar
  4. 4.
    Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K (2011) Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat Mater 10:450–455.  https://doi.org/10.1038/nmat3026 CrossRefGoogle Scholar
  5. 5.
    Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107:1233–1271CrossRefGoogle Scholar
  6. 6.
    Shirota YJ (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem (10): 101–25Google Scholar
  7. 7.
    Zeng HP, Wang TT, Sandanayaka SD, Araki Y, Ito O (2005) Photoinduced charge separation and charge recombination in [60]fullerene−ethylcarbazole and [60]fullerene−triphenylamines in polar solvents. J Phys Chem A 109(21):4713–4720CrossRefGoogle Scholar
  8. 8.
    Kageyama H, Shirota Y (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107(4):953–1010CrossRefGoogle Scholar
  9. 9.
    Wei H, Yan X, Wu S, Luo Z, Wei S, Guo Z (2012) Electropolymerized polyaniline stabilized tungsten oxide nanocomposite films: electrochromic behavior and electrochemical energy storage. J Phys Chem C 116:25052–25064CrossRefGoogle Scholar
  10. 10.
    Slawomir Braun X, Osikowicz W, Wang Y, Salaneck WR (2007) Energy level alignment regimes at hybrid organic–organic and inorganic–organic interfaces. Org Electron 8(1):14–20CrossRefGoogle Scholar
  11. 11.
    Osikowicz W, de Jong MP, Salaneck WR (2007) Alignment of C60 and poly 3TH. Adv Mater 19:4213CrossRefGoogle Scholar
  12. 12.
    Wan A, Hwang J, Amy F, Kahn A (2005) Impact of electrode contamination on the αNPD/Au hole injection barrier. Org Electron 6:47CrossRefGoogle Scholar
  13. 13.
    Slawomir B, William Salaneck R, Fahlman M (2001) Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater 21:1450–1472Google Scholar
  14. 14.
    Klenkler RA, Xu G, Zoran DP (2007) Charge injection at interfaces between molecularly doped polymer thin films. Appl Phys Lett 90:092106.  https://doi.org/10.1063/1.2709936 CrossRefGoogle Scholar
  15. 15.
    de Freitas JN, Grova IR, Akcelrud LC, Arici E, Serdar Sariciftcic N, Nogueir AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mat Chem 20:4845CrossRefGoogle Scholar
  16. 16.
    Ananthakumar S, Ramkumar J, Moorthy Babu S (2014) Synthesis of thiol modified CdSe nanoparticles/P3HT blends for hybrid solar cell structures. Mater Sci Semicond Process 22:44–49CrossRefGoogle Scholar
  17. 17.
    Otero M, Dittrich T, Rappich J, Heredia DA, Fungo F, Durantini E, Otero L (2015) Photoinduced charge separation in organic-inorganic hybrid system: C60-containing electropolymer/CdSe-quantum dots. Electrochim Acta 173(10):316–322CrossRefGoogle Scholar
  18. 18.
    Grynko DO, Fedoryak OM, Smertenko PS, Ogurtsov NA, Pud AA, Noskov, Yu V, Dimitriev OP (2015) Multifunctional role of nanostructured CdS interfacial layers in hybrid solar cells. Nanosci Nanotechnol 15(1):752–758CrossRefGoogle Scholar
  19. 19.
    Liu T, Mai X, Chen H, Ren J, Liu Z, Li Y, Gao L, Wang N, Zhang J, He H, Guo Z (2018) Carbon nanotube aerogel–CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale 10:4194–4201.  https://doi.org/10.1039/C7NR09260A CrossRefGoogle Scholar
  20. 20.
    Wei H, Yan X, Li Y, Wu S, Wang A, Wei S, Guo Z (2012) Hybrid electrochromic fluorescent poly (DNTD)/CdSe@ZnS composite films. J Phys Chem C 116(7):4500–4510.  https://doi.org/10.1021/jp2117906 CrossRefGoogle Scholar
  21. 21.
    Chen Y, Tamblyn I, Quek SY (2017) Energy level alignment at hybridized organic–metal interfaces: the role of many-electron effects. J Phys Chem C 121(24):13125–13134CrossRefGoogle Scholar
  22. 22.
    Zhong Y, Tada A, Geng Y, Wei Q, Hashimoto K, Tajima K (2013) Donor/acceptor interface modifications in organic solar cells. J Photopolym Sci Technol 26(2):181–184CrossRefGoogle Scholar
  23. 23.
    Keddam M, Senyarich S, Takenouti H, Bernard P (1994) A composite electrode for studying powdered electroactive materials: preparation and performance. J Appl Electrochem 24:1037CrossRefGoogle Scholar
  24. 24.
    Anani A, Mao Z, Srinivasan S, Appleby AJ (1991) Dispersion deposition of metal—particle composites and the evaluation of dispersion deposited nickel—lanthanum nickelate electrocatalyst for hydrogen evolution. J Appl Electrochem 21(8):683–689CrossRefGoogle Scholar
  25. 25.
    HOVESTAD A, JANSSEN LJJ (1995) Electrochemical codeposition of inert particles in a metallic matrix. J apply Electrochem 25:519–527CrossRefGoogle Scholar
  26. 26.
    de Tacconi NR, Wenren H, Rajeshwar K (1997) Photoelectrochemical behavior of nanocomposite films of cadmium sulfide, or titanium dioxide, and nickel. J of Electrochem Soc 144(9):3159–3163CrossRefGoogle Scholar
  27. 27.
    Kasem K, Olsen JC, Baker K, Santucci C, Lalla J, Willman AN (2016) Electrochemical studies on a photoactive. Synth Met 217:61–67CrossRefGoogle Scholar
  28. 28.
    Zhou M, Lin W-Y, de Tacconi NR, Rajeshwar K (1996) Metal/semiconductor electrocomposite photoelectrodes. J Electroanal Chem 402:221–224CrossRefGoogle Scholar
  29. 29.
    Beck P, Dahhaus M, N. Zahedi N. (1992) Anodic codeposition of polypyrrole and dispersed TiO2. Electrochem Acta 37:1265CrossRefGoogle Scholar
  30. 30.
    De La Cruze TEC, Ambrosio Lazaro RC, Mota Gonzalez ML, Luque PA, Castillo SJ, Carrillo- Castillo A. (2015) A simple method for the synthesis of CdS nanoparticles using a novel surfactant. Chalcogenide Lett 12(4):147–153Google Scholar
  31. 31.
    Zaban A, Greenstien M, Bisquert J (2003) Determination of the electron life time in monocrystalline dye solar cells by open–circuit voltage decay measurements. Chem Physics Chem 4:859CrossRefGoogle Scholar
  32. 32.
    Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46CrossRefGoogle Scholar
  33. 33.
    Dressel M (2002) Electrodynamics of solids optical properties of electrons in matter, editor George Grüner. Cambridge university press, CambridgeCrossRefGoogle Scholar
  34. 34.
    Pankaj S, Katyal SC (2007) Determination of optical parameters of alfa (As2Se3)90Ge10 thin film. J Phys D Appl Phys 40(7):2115–2120CrossRefGoogle Scholar
  35. 35.
    Wu MT, Yao X, Yuan ZH, Sun HT, Wu WC, Chen OH, Xu GY (1993) Effect of noble metal catalyst on titania exhaust gas oxygen sensor. Sensors Actuators B 14:491CrossRefGoogle Scholar
  36. 36.
    Seraghni N, Belattar S, Mameri Y, Debbache N, Sehili T (2012) Fe (III)-citrate-complex-induced photooxidation of 3-methylphenol in aqueous solution. Int J Photoenergy 2012:630425, 10 pages.  https://doi.org/10.1155/2012/630425 CrossRefGoogle Scholar
  37. 37.
    Kasem KK, Elmasry M, Baker K, Santucci C (2017) Photoelectrochemical and magnetic studies on photoactive interface thin solid film assemblies. Thin Solid Films 634:56–65CrossRefGoogle Scholar
  38. 38.
    Sookhakian M, Amin YM, Baradaran S, Tajabadi MT, MoradiGolsheikh A, and Basirun WJ (2014) A layer-by-layer assembled graphene/zinc sulfide/polypyrrole thin-film electrode via electrophoretic deposition for solar cells. Thin Solid Films, 204–211Google Scholar
  39. 39.
    Gerischer H (1970) In Physical Chemistry. An advanced treatise, H. Eyring, ed. Academic Press, New York. 9:463–542Google Scholar
  40. 40.
    Abdullah M, Low GKC, Matthews RW (1990) Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. J Phys Chem 94(17):6820–6825CrossRefGoogle Scholar
  41. 41.
    Cerviño RM, Triaca WE, Arvía AJ (1984) Phenomenology related to the kinetics of Kolbe electrosynthesis. J Electroanal Chem 172:255–264CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Nardes AM, Zhu K (2014) Solid state mesostructured peroveskite CH3NH2PbI3 solar cells. J Physical Chemistry Lett 5(5):490–494CrossRefGoogle Scholar
  43. 43.
    Klein M, Pankiewicz R, Zalas M, Stampor W (2016) Magnetic field effects on dye sensitized solar cells controlled by different cell architecture. Sci Rep 6:30077CrossRefGoogle Scholar
  44. 44.
    Wei H, Gu H, Guo J, Cui D, Yan X, Liu J, Cao D, Wang X, Wei S, Guo Z (2017) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 1(1):127–134.  https://doi.org/10.1007/s42114-017-0003-4 CrossRefGoogle Scholar
  45. 45.
    Dance ZEX, Ahrens MJ, Vega AM, Ricks AB, McCamant DW, Ratner MA, Wasielewski MR (2008) Direct observation of the preference of hole transfer over electron transfer for radical ion pair recombination in donor-bridge-acceptor molecules. J Am Chem Soc 130:830–832CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of SciencesIndiana University KokomoKokomoUSA

Personalised recommendations