Advertisement

Advanced Composites and Hybrid Materials

, Volume 1, Issue 2, pp 320–331 | Cite as

Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics

  • Weiwei Zhao
  • Zhijun Shi
  • Sanming Hu
  • Guang YangEmail author
  • Huifang TianEmail author
Original Research

Abstract

Piezoelectric hydrogel nanocomposites are being developed as interface for connecting biological organs and electronics because of their flexibility, biocompatibility, and electromechanical behaviours, which allow environmental stimulations to be converted into electronic signals. The vision of this work is to develop a series of piezoelectric hydrogel nanocomposites which is capable of generating electric current in aqueous condition. Conductive nanoparticles have been composited in the PHEMA-based hydrogel. Theoretical models and characterisations on the electromechanical properties of such hydrogel have been investigated to assist the understanding of the piezoelectric mechanisms. The hydrogel nanocomposite was demonstrated as a self-powered motion sensor to quantitatively detect human motion and can be considered as candidate material for soft energy harvesting electronics. Overall, the work presented in this paper provides theoretical basis, design guidelines, and technical support for the development of soft self-powered electronics, thus unlocking the potential of piezoelectric hydrogel nanocomposites.

Graphical abstract

Keywords

Piezoelectricity PHEMA-based hydrogel Nanocomposites Self-powered sensor 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (51703176, 51603079), the Fundamental Research Funds for the Central Universities (WUT2017IVA015, HUST2014XJGH009, WUT2016III035), and the Science and Technology Support Plan in Jiangsu Province of China (BE2014684). The authors wish to thank the Hubei Digital Manufacturing Key Laboratory at the WUT for performing characterisation of various samples.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42114_2018_36_MOESM1_ESM.docx (807 kb)
ESM 1 (DOCX 806 kb)
ESM 2

(MP4 550 kb)

References

  1. 1.
    Briscoe J, Dunn S (2015) Piezoelectric nanogenerators—a review of nanostructured piezoelectric energy harvesters. Nano Energy 14:15–29CrossRefGoogle Scholar
  2. 2.
    Zhu G, Yang R, Wang S, Wang ZL (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10(8):3151–3155CrossRefGoogle Scholar
  3. 3.
    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10(6):2133–2137CrossRefGoogle Scholar
  4. 4.
    Zhao Z, Pu X, Han C, Du C, Li L, Jiang C, Hu W, Wang ZL (2015) Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9(8):8578–8583CrossRefGoogle Scholar
  5. 5.
    Ghosh R, Pusty M, Guha PK (2016) Reduced graphene oxide-based piezoelectric nanogenerator with water excitation. IEEE T Nanotechnol 15(2):268–273CrossRefGoogle Scholar
  6. 6.
    Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015CrossRefGoogle Scholar
  7. 7.
    Annabi N, Tamayol, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124CrossRefGoogle Scholar
  8. 8.
    Thiele J, Ma Y, Bruekers S, Ma S, Huck WT (2014) 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Adv Mater 26:125–148CrossRefGoogle Scholar
  9. 9.
    Shi Z, Shi X, Ullah MW, Li S, Revin VV, Yang G (2018) Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Adv Compos Hybrid Mater 1(1):79–93CrossRefGoogle Scholar
  10. 10.
    Abudabbus MM, Jevremović I, Janković A, Perić-Grujić A, Matić I, Vukašinović-Sekulić M, Hui D, Rhee KY, Mišković-Stanković V (2016) Biological activity of electrochemically synthesized silver doped polyvinyl alcohol/graphene composite hydrogel discs for biomedical applications. Compos Part B Eng 104:26–34CrossRefGoogle Scholar
  11. 11.
    Majumda P (2014) Modelling and simulation of hydrogel growth mechanism by analysis of experimental data. Chin J Polym Sci 32(3):350–361CrossRefGoogle Scholar
  12. 12.
    Dai T, Tang R, Yue X, Xu L, Lu Y (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. Chin J Polym Sci 33(7):1018–1027CrossRefGoogle Scholar
  13. 13.
    Ansari R, Pourashraf T, Gholami R, Shahabodini A (2016) Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos Part B Eng 90:267–277CrossRefGoogle Scholar
  14. 14.
    Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 111:40–54CrossRefGoogle Scholar
  15. 15.
    Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, Jiang L (2013) Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater 25:6064–6068CrossRefGoogle Scholar
  16. 16.
    Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40:2385–2401CrossRefGoogle Scholar
  17. 17.
    Dhiman P, Yavari F, Mi X, Gullapalli H, Shi Y, Ajayan PM, Koratkar N (2011) Harvesting energy from water flow over graphene. Nano Lett 11(8):3123–3127CrossRefGoogle Scholar
  18. 18.
    Lee JB, Peng S, Yang D, Roh YH, Funabashi H, Park N, Rice EJ, Chen L, Long R, Wu M (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7:816–820CrossRefGoogle Scholar
  19. 19.
    Aqeel SM, Huang Z, Walton J, Baker C, Falkner DL, Liu Z, Wang Z (2017) Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1(1):185–192CrossRefGoogle Scholar
  20. 20.
    Shi Z, Zhao W, Li S, Yang G (2017) Self-powered hydrogel induced by ion transport. Nano 9:17080–17090Google Scholar
  21. 21.
    Kharismadewi D, Haldorai Y, Nguyen VH, Tuma D, Shim JJ (2016) Synthesis of graphene oxide-poly(2-hydroxyethyl methacrylate) composite by dispersion polymerization in supercritical CO2: adsorption behaviour for the removal of organic dye. Compos Interface 23(7):719–739CrossRefGoogle Scholar
  22. 22.
    Massoumi B, Ghandomi F, Abbasian M, Eskandani M, Jaymand M (2016) Surface functionalization of graphene oxide with poly(2-hydroxyethyl methacrylate)-graft-poly(e-caprolactone) and its electrospun nanofibers with gelatin. Appl Phys A Mater Sci Process 122:1000CrossRefGoogle Scholar
  23. 23.
    Hao G, Hippauf F, Oschatz M, Wisser FM, Leifert A, Nickel W, Mohamed-Noriega N, Zheng Z, Kaskel S (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8(7):7138–7146CrossRefGoogle Scholar
  24. 24.
    Zhao W, Liu C, Wu F, Lenardi C (2014) Investigation on the mechanical behaviour of poly(2-hydroxyethyl methacrylate) hydrogel membrane under compression in the assembly process of microfluidic system. J Polym Sci Polym Phys 52:485–495CrossRefGoogle Scholar
  25. 25.
    Huang WF, Tsui CP, Tang CY, Yang M, Gu L (2017) Surface charge switchable and pH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos Part B Eng 121:83–91CrossRefGoogle Scholar
  26. 26.
    Zhao W, Li X, Gao S, Feng Y, Huang J (2017) Understanding mechanical characteristics of cellulose nanocrystals reinforced PHEMA nanocomposite hydrogel: in aqueous cyclic test. Cellulose 24(5):2095–2110CrossRefGoogle Scholar
  27. 27.
    Siria A, Poncharal P, Biance A, Fulcrand R, Blasé X, Purcell ST, Bocquet L (2013) Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature 494:455–458CrossRefGoogle Scholar
  28. 28.
    Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324CrossRefGoogle Scholar
  29. 29.
    Peppas NA, Benner RE (1980) Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1(3):158–162CrossRefGoogle Scholar
  30. 30.
    Zhao W, Shi Z, Chen X, Yang G, Lenardi C, Liu C (2015) Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression. Compos Part B Eng 76:292–299CrossRefGoogle Scholar
  31. 31.
    Zhao W, Lenardi C, Webb P, Liu C, Santaniello T, Gassa FA (2013) Methodology to analyse and simulate mechanical characteristics of poly (2-hydroxyethyl methacrylate) hydrogel. Polym Int 62:1059–1067Google Scholar
  32. 32.
    Gao X, Shi Z, Liu C, Yang G, Sevostianov I, Silberschmidt V (2015) Inelastic behaviour of bacterial cellulose hydrogel: in aqua cyclic tests. Polym Test 44:82–92CrossRefGoogle Scholar
  33. 33.
    Gao X, Sozumert E, Shi Z, Yang G, Silberschmidt V (2017) Assessing stiffness of nanofibres in bacterial cellulose hydrogels: numerical-experimental framework. Mater Sci Eng C 77:9–18CrossRefGoogle Scholar
  34. 34.
    Koomson C, Zeltmann SE, Gupta N (2018) Strain rate sensitivity of polycarbonate and vinyl ester from dynamic mechanical analysis experiments. Adv Compos Hybrid Mater.  https://doi.org/10.1007/s42114-018-0026-5
  35. 35.
    Nava A, Mazza E, Kleinermann F, Avis NJ, McClure J, Bajka M (2004) Evaluation of the mechanical properties of human liver and kidney through aspiration experiments. Technol Health Care 12(3):269–280Google Scholar
  36. 36.
    Basdogan C Dynamic material properties of human and animal livers. In: Payan Y (ed) Soft tissue biomechanical modelling for computer assisted surgery, Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 11. Springer, BerlinGoogle Scholar
  37. 37.
    Zhu Y, Chen X, Zhang X, Chen S, Shen Y, Song L (2016) Modelling the mechanical properties of liver fibrosis in rats. J Biomech 49(9):1461–1467CrossRefGoogle Scholar
  38. 38.
    Gao X, Shi Z, Lau A, Liu C, Yang G, Silberschmidt V (2016) Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Mater Sci Eng C 62:130–136CrossRefGoogle Scholar
  39. 39.
    Chang ZY, Yan WY, Shang J, Liu JZ (2014) Piezoelectric properties of graphene oxide: a first-principles computational study. Appl Phys Lett 105:023103CrossRefGoogle Scholar
  40. 40.
    Alamusi XJM, Wu LK, Hu N, Qiu JH, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu YL, Ning HM, Li JH, Li Y, Zhao YH (2012) Evaluation of piezoelectric property of reduced graphene oxide (rGO)-poly(vinylidene fluoride) nanocomposites. Nano 4:7250–7255Google Scholar
  41. 41.
    Cooper D, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, Majlis N, Massicotte M, Vandsburger L, Whiteway E, Yu V (2012) Experimental review of graphene. ISRN condensed matter. Physics:501686.  https://doi.org/10.5402/2012/501686.
  42. 42.
    Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sensors Actuators B Chem 207:690–715CrossRefGoogle Scholar
  43. 43.
    Kwon YJ, Kim Y, Jeon H, Cho S, Lee W, Lee JU (2017) Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos Part B Eng 122:23–30CrossRefGoogle Scholar
  44. 44.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  45. 45.
    Yun S, Kim J (2011) Mechanical, electrical, piezoelectric and electro-active behaviour of aligned multi-walled carbon nanotube/cellulose composites. Carbon 49:518–527CrossRefGoogle Scholar
  46. 46.
    Tarfaoui M, Lafdi K, Moumen AE (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos Part B Eng 103:113–121CrossRefGoogle Scholar
  47. 47.
    Martínez MT, Tseng YC, Ormategui N, Loinaz I, Eritja R, Bokor J (2009) Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett 9(2):530–536CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electronic EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Hubei Digital Manufacturing Key LaboratoryWuhanChina
  3. 3.College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations