A review on variability of partial pressure of carbon dioxide in coastal waters of India

  • S. SrichandanEmail author
  • S. Prakash
  • S. K. Baliarsingh
  • A. A. Lotliker
  • K. C. Sahu
Review Article


This review compiles scientific studies on the partial pressure of carbon dioxide (pCO2) in Indian waters (coastal and estuarine). Higher surface pCO2 level varying within 111–1808 µatm has been reported on the east coast of India (western Bay of Bengal) in comparison to the west coast (eastern Arabian Sea) with variability within 266–685 µatm. The estuarine ecosystems of Indian coast have been reported with higher surface pCO2 levels along the east coast (4–34,026 µatm) in comparison to the west coast (351–20,421 µatm). Indian estuaries can be considered as significant source of carbon dioxide (CO2). The seasonal variability pattern discerned higher magnitudes of pCO2 during monsoon period in comparison to pre-monsoon. This review summarizes the key findings of available literature and identifies spatio-temporally understudied pockets of the Indian coast on carbonate chemistry research.


Carbon Trophic status Estuary Bay of Bengal Arabian Sea 



The authors are thankful to Director, Indian National Centre for Ocean Information Services (INCOIS), Hyderabad for the encouragement. The first author extends thanks to DST-SERB (Govt. of India) for awarding National Post Doctoral Fellowship (award no. PDF/2016/002087). The work is an outcome of "Coastal Monitoring" program of INCOIS and bears the institute contribution no. 357.


  1. Akhand, A., Chanda, A., Dutta, S., & Hazra, S. (2012). Air—water carbon dioxide exchange dynamics along the outer estuarine transition zone of Sundarban, northern Bay of Bengal, Indian. Journal of Geo-Marine Sciences,41(2), 111–116.Google Scholar
  2. Akhand, A., Chanda, A., Dutta, S., Manna, S., Hazra, S., Mitra, D., et al. (2013a). Characterizing air–sea CO2 exchange dynamics during winter in the coastal water off the Hugli-Matla estuarine system in the northern Bay of Bengal, India. Journal of Oceanography,69, 687–697.Google Scholar
  3. Akhand, A., Chanda, A., Dutta, S., Manna, S., Sanyal, P., Hazra, S., et al. (2013b). Dual character of Sundarban estuary as a source and sink of CO2 during summer: An investigation of spatial dynamics. Environmental Monitoring and Assessment,185, 6505–6515.Google Scholar
  4. Akhand, A., Chanda, A., Manna, S., Das, S., Hazra, S., Roy, R., et al. (2016). A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophysical Research Letters,43(22), 11726–11735.Google Scholar
  5. Bhadury, P. (2015). Effects of ocean acidification on marine invertebrates—a review. Indian Journal of Geo-Marine Sciences,44(4), 454–464.Google Scholar
  6. Biswas, H., Mukhopadhyay, S. K., De, T. K., Sen, S., & Jana, T. K. (2004). Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India. Limnology and Oceanography,49, 95–101.Google Scholar
  7. Borges, A. V., Djenidi, S., Lacroix, G., Theate, J., Delille, B., & Frankignoulle, M. (2003). Atmospheric CO2 flux from mangrove surrounding waters. Geophysical Research Letters,30(11), 1558.Google Scholar
  8. Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Abril, G., et al. (2003). Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests. Global Biogeochemical Cycles,17(4), 1114.Google Scholar
  9. Caldeira, K., & Wickett, M. E. (2003). Anthropogenic carbon and ocean pH. Nature,425, 365.Google Scholar
  10. Doney, S.C., Fabry, V.J., Feely, R.A., & Kleypas, J.A. (2009). Ocean Acidification: The Other CO2 Problem. ‎Annual Review of Marine Science, 1, 169–192.Google Scholar
  11. Dupont, S., & Portner, H. (2013). A snapshot of ocean acidification research. Marine Biology,160, 1765–1771.Google Scholar
  12. Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., et al. (2005). Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in a mesocosm experiment. Limnology and Oceanography,50, 493–507.Google Scholar
  13. Erez, J., Reynaud, S., Silverman, J., Schneider, K., & Allemand, D. (2011). Coral calcification under ocean acidification and global change. In S. Dubinsky & N. Stambler (Eds.), Coral reefs: an ecosystem in transition (pp. 151–176). New York: Springer.Google Scholar
  14. Feely, R. A., Doney, S. C., & Cooley, S. R. (2009). Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanogrphy,22(4), 36–47.Google Scholar
  15. Ganguly, D., Dey, M., Chowdhury, C., Pattnaik, A. A., Sahu, B. K., & Jana, T. K. (2011). Coupled micrometeorological and biological processes on atmospheric CO2 concentrations at the land–ocean boundary, NE coast of India. Atmospheric Environment,45, 3903–3910.Google Scholar
  16. Gattuso, J. P., & Hansson, L. (2011). Ocean Acidification. Oxford: Oxford University Press.Google Scholar
  17. George, M. D., Kumar, M. D., Naqvi, S. W. A., Banerjee, S., Narvekar, P. V., De Sousa, S. N., et al. (1994). A study of the carbon dioxide system in the northern Indian Ocean during premonsoon. Marine Chemistry,47, 243–254.Google Scholar
  18. Gupta, G. V. M., Sarma, V. V. S. S., Robin, R. S., Raman, A. V., Kumar, M. J., Rakesh, M., et al. (2008). Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilika Lake, India). Biogeochemistry,87(3), 265–285.Google Scholar
  19. Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V., Madeswaran, P., & Nair, S. (2009). CO2 Supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of anthropogenic effect. Ecosystems,12, 1145–1157.Google Scholar
  20. Havenhand, J. N. (2012). How will Ocean acidification affect Baltic Sea Ecosystems? An assessment of Plausible impacts on key functional groups. Ambio,41, 637–644.Google Scholar
  21. Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts and the resilience of coral reefs. Science,301, 929–933.Google Scholar
  22. Kanuri, V. V., Gijjapu, D. R., Munnooru, K., Sura, A., Patra, S., Vinjamuri, R. R., et al. (2017). Scales and drivers of seasonal pCO2 dynamics and net ecosystem exchange along the coastal waters of southeastern Arabian Sea. Marine Pollution Bulletin,121(1–2), 372–380.Google Scholar
  23. Kuhns, R. J., & Shaw, G. H. (2018). The Carbon dioxide problem and Solution. In R. J. Kuhns & G. H. Shaw (Eds.), Navigating the energy Maze (pp. 99–115). Switzerland: Springer.Google Scholar
  24. Kumar, M. D., Naqvi, S. W. A., George, M. D., & Jayakumar, D. A. (1996). A sink for atmospheric carbon dioxide in the northeast Indian Ocean. Journal of Geophysical Research,101(C8), 18121–18125.Google Scholar
  25. Kumar, S. P., & Prasad, T. G. (1996). Winter cooling in the northern Arabian sea. Current Science,71(11), 834–841.Google Scholar
  26. Kurihara, H. (2008). Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series,373, 275–284.Google Scholar
  27. Latha, T. P., Rao, K. H., Sarma, V. V. S. S., Seetaram, P., Choudhury, S. B., Nagamani, P. V., et al. (2015). Estimation of Air–Sea CO2 Flux in the Coastal Waters of Visakhapatnam. Journal of Indian Society of Remote Sensing,43(3), 647–652.Google Scholar
  28. Madhupratap, M., Gauns, M., Ramaiah, N., Kumar, S. P., Muraleedharan, P. M., De Sousa, S. N., et al. (2003). Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Research Part II,50, 881–896.Google Scholar
  29. Mostofa, K. M., Liu, C. Q., Zhai, W., Minella, M., Vione, D. V., Gao, K., et al. (2016). Reviews and Syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences,13, 1767–1786.Google Scholar
  30. Muduli, P. R., Kanuri, V. V., Robin, R. S., Charan Kumar, B., Patra, S., Raman, A. V., et al. (2012). Spatio-temporal variation of CO2 emission from Chilika Lake, a tropical coastal lagoon, on the east coast of India. Estuarine, Coastal and Shelf Science,113, 305–313.Google Scholar
  31. Mukhopadhyay, S. K., Biswas, H., De, T. K., Senb, S., & Jana, T. K. (2002). Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. Journal of Environmental Monitoring,4, 549–552.Google Scholar
  32. Padhy, P. C., Nayak, R. K., Dadhwal, V. K., Salim, M., Mitra, D., Chaudhury, S. B., et al. (2016). Estimation of Partial Pressure of Carbon Dioxide and Air–Sea Fluxes in Hooghly Estuary Based on In Situ and Satellite Observations. Journal of Indian Society of Remote Sensing,44(1), 135–143.Google Scholar
  33. Pattanaik, S., Sahoo, R. K., Satapathy, D. R., Panda, C. R., & Choudhury, S. B. (2016). Variation in Carbonate System and Air-Water CO2 Flux during Summer in the Mahanadi Estuary, India. International Journal of Advances in Agricultural & Environmental Engineering,3(2), 1523–1531.Google Scholar
  34. Pattanaik, S., Sahoo, R. K., Satapathy, D. R., Panda, C. R., Choudhury, S. B., & Mohapatra, P. K. (2017). Intra-annual variability of CO2 flux in the Mahanadi estuary—a tropical estuarine system, India. Annals of Marine Science,1(1), 005–012.Google Scholar
  35. Qasim, S. Z. (2003). Indian estuaries (p. 259). Ballard Estate: Allied Publication Pvt. Ltd.Google Scholar
  36. Qasim, S. Z. (2010). Role of Estuaries in sustainability of coastal environment. Journal of Coastal Environment,1(2), 105–114.Google Scholar
  37. Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., et al. (2013). Observations: Ocean. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 255–315). Cambridge: Cambridge University Press.Google Scholar
  38. Robin, R. S., Kanuri, V. V., Muduli, P. R., Ganguly, D., Patra, S., Hariharan, G., et al. (2016). CO2 saturation and trophic shift induced by microbial metabolic processes in a river-dominated ocean margin (tropical shallow lagoon, Chilika, India). Geomicrobiology Journal,33(6), 513–529.Google Scholar
  39. Royal Society. (2005). Ocean acidification due to increasing atmospheric carbon dioxide (p. 57). London: The Royal Society.Google Scholar
  40. Sarma, V. V. S. S., Krishna, M. S., Paul, Y. S., & Murty, V. S. N. (2015a). Observed changes in ocean acidity and carbon dioxide exchange in the coastal Bay of Bengal a link to air pollution. Tellus B: Chemical and Physical Meteorology,67, 24638.Google Scholar
  41. Sarma, V. V. S. S., Krishna, M. S., Rao, V. D., Viswanadham, R., Kumar, N. A., Kumari, T. R., et al. (2012a). Sources and sinks of CO2 in the west coast of Bay of Bengal. Tellus B: Chemical and Physical Meteorology,64, 10961.Google Scholar
  42. Sarma, V. V. S. S., Kumar, M. D., Gauns, M., & Madhupratap, M. (2000). Seasonal controls on surface pCO2 in the central and eastern Arabian Sea. Journal of Earth System Science,109(4), 471–479.Google Scholar
  43. Sarma, V. V. S. S., Kumar, M. D., & George, M. D. (1998). The central and eastern Arabian Sea as a perennial source of atmospheric carbon dioxide. Tellus B: Chemical and Physical Meteorology,50(2), 179–184.Google Scholar
  44. Sarma, V. V. S. S., Kumar, M. D., George, M. D., & Rajendran, A. (1996). Seasonal variations in inorganic carbon components in the central and eastern Arabian Sea. Current Science,71(11), 852–856.Google Scholar
  45. Sarma, V. V. S. S., Kumar, M. D., & Manerikar, M. (2001). Emission of carbon dioxide from a tropical estuarine system, Goa. India. Geophysical Research Letters,28(7), 1239–1242.Google Scholar
  46. Sarma, V. V. S. S., Kumar, N. A., Prasad, V. R., Venkataramana, V., Appalanaidu, S., Sridevi, B., et al. (2011). High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges. Geophysical Research Letters,38, L08601.Google Scholar
  47. Sarma, V. V. S. S., Paul, Y. S., Vani, D. G., & Murty, V. S. N. (2015b). Impact of river discharge on the coastal water pH and pCO2 levels during the Indian Ocean Dipole (IOD) years in the western Bay of Bengal. Continental Shelf Research,107, 132–140.Google Scholar
  48. Sarma, V. V. S. S., Swathi, P. S., Kumar, M. D., Prasannakumar, S., Bhattathiri, P. M. A., Madhupratap, M., et al. (2003). Carbon budget in the eastern and central Arabian Sea: An Indian JGOFS synthesis. Global Biogeochemical Cycles,17(4), 1102.Google Scholar
  49. Sarma, V. V. S. S., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S. K., Naidu, S. A., et al. (2012b). Carbon dioxide emissions from Indian monsoonal estuaries. Geophysical Research Letters,39, L03602.Google Scholar
  50. Varkey, M. J., Murty, V. S. N., & Suryanarayana, A. (1996). Physical oceanography of the Bay of Bengal and Andaman Sea Oceanography and marine biology. Oceanography and Marine Biology: An Annual Review,34, 1–70.Google Scholar
  51. Venkateswaran, S. V. (1956). On evaporation from the Indian ocean. Indian Journal Meteorology and Geophysics,7, 265–284.Google Scholar
  52. Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H., & Smith, S. L. (2013). Indian Ocean biogeochemical processes and ecological variability. Geophysical Monograph Series: American Geophysical Union.Google Scholar
  53. World Bank (2019) India - Enhancing coastal and ocean resource efficiency project: Environmental Assessment (Vol. 2): Guidance Manual (English), India.

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Indian National Centre for Ocean Information ServicesHyderabadIndia
  2. 2.Department of Marine SciencesBerhampur UniversityBerhampurIndia

Personalised recommendations