Advertisement

May a natural lake behave as an efficient Fenton reactor under dark conditions?

  • D. A. NichelaEmail author
  • F. S. G. Einschlag
  • S. G. Beamud
  • P. F. Temporetti
  • F. L. Pedrozo
Short Communication
  • 25 Downloads

Abstract

Phenol degradation experiments were performed to study the potential behavior of the acidic Lake Caviahue (LC) as a dark Fenton reactor under natural conditions and upon H2O2 addition at doses typically used for technological applications. In both cases, to assess the influence of dissolved organic matter present in the lake, control experiments were carried out under identical initial conditions (pH, concentrations of phenol, iron, and H2O2), but in the absence of organic matter. A first set of experiments was performed to test the feasibility of dark Fenton processes under environmental conditions. Lake water samples were used as reaction matrix and catalyst source, whereas phenol and H2O2 were added as model pollutant and oxidant, respectively. H2O2 concentrations used were similar to those reported for rainwater. Results show that phenol can be degraded under all conditions studied and that the amount of phenol consumed depends on both the H2O2 concentration added and the matrix composition LC A second set of experiments was designed to characterize the lake behavior as a natural Fenton reactor upon the addition of H2O2 concentrations typically used for technological applications. Although phenol concentration profiles obtained for LC and the artificial solution show the characteristic behavior of Fenton-like systems, the trends are rather different, since for LC, the lag phase is much longer than that for the artificial matrix. Overall, the results suggest that the Fe(III)-chelating effect of the organic matter present in LC slows down reaction rates, but it does not block phenol degradation through Fenton-like processes.

Keywords

Dark Fenton process Natural lake reactor Natural organic matter 

Notes

Acknowledgements

This research was supported through grants from Agencia Nacional de Promoción Científica y Tecnológica ANPCyT (PICT 2012 1389), Universidad Nacional del Comahue (Program 04/B166), Consejo Nacional de Investigaciones Científicas y Técnicas CONICET (PIP 11220090100013) and Ministerio de Ciencia Tecnología en Innovación Productiva, Institut Francais Argentine and TOTAL S.A (Distinción Franco Argentina en Innovación 2018). All the authors collaborated with the work making contributions within their expertise area.

References

  1. Bach, A., Shemer, H., & Semiat, R. (2010). Kinetics of phenol mineralization by Fenton-like oxidation. Desalination,264, 188–192.CrossRefGoogle Scholar
  2. Cabrera, J. M. (2016). Relación entre materia orgánica, hierro, aluminio y manganeso, y las algas acidófilas del Lago Caviahue, Neuquén, Argentina. Doctoral Thesis Universidad Nacional de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, pp 207.Google Scholar
  3. Carlos, L., Fabbri, D., Capparelli, A. L., Bianco Prevot, A., Pramauro, E., & García Einschlag, F. S. (2008). Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton’s reagent. Chemosphere,72, 952–958.CrossRefGoogle Scholar
  4. Carlos, L., Nichela, D., Triszcz, J. M., Felice, J. I., & García Einschlag, F. S. (2010). Nitration of nitrobenzene in Fenton’s processes. Chemosphere,80, 340–345.CrossRefGoogle Scholar
  5. Carta, R., & Desogus, F. (2013). The enhancing effect of low power microwaves on phenol oxidation by the Fenton process. Jounal of Environmental Chemical Engineering,1, 1292–1300.CrossRefGoogle Scholar
  6. Chen, R., & Pignatello, J. J. (1997). Role of quinone intermediates as electron shuttles in fenton and photoassisted fenton oxidations of aromatic compounds. Environmental Science and Technology,31, 2399–2406.CrossRefGoogle Scholar
  7. Diaz, M., Pedrozo, F., Reynolds, C., & Temporetti, P. (2007). Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica,37, 17–27.CrossRefGoogle Scholar
  8. Du, Y., Zhou, M., & Lei, L. (2006). Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials,136, 859–865.CrossRefGoogle Scholar
  9. Gammons, G. H., Parker, S. R., & Pedrozo, F. L. (2008). The Río Agrio Basin, Argentina: A natural analog to watersheds affected by acid mine drainage. Mining Engineering,60, 74–78.Google Scholar
  10. Geller, W., Klapper, H., & Schultze, M. (1998). Natural and anthropogenic sulfuric acidification of lakes. In W. Geller, M. Schultze, & W. Salomons (Eds.), Acidic mining lakes. Acid mine drainage, limnology and reclamation (pp. 3–14). Berlin: Springer.  https://doi.org/10.1007/978-3-642-71954-7.CrossRefGoogle Scholar
  11. Georgi, A., Schierz, A., Trommler, U., Horwitz, C. P., Collins, T. J., & Kopinke, F.-D. (2007). Humic acid modified Fenton reagent for enhancement of the working pH range. Applied Catalysis B-Environmental,72, 26–36.CrossRefGoogle Scholar
  12. Gómez-Ortiz, D., et al. (2014). Identification of the subsurface sulfidebodies responsible for acidity in Río Tinto source water, Spain. Earth and Planetary Science Letters,391, 36–41.CrossRefGoogle Scholar
  13. Gonçalves, C., dos Santos, M. A., Fornaro, A., & Pedrotti, J. J. (2010). Hydrogen peroxide in the rainwater of sao paulo megacity: measurements and controlling factors. Journal of the Brazilian Chemistry Society,21, 331–339.CrossRefGoogle Scholar
  14. Hanson, A. K., Tindale, N. W., & Abdel-Moati, M. A. R. (2001). An Equatorial Pacific rain event: influence on the distribution of iron and hydrogen peroxide in surface waters. Marine Chemistry,75, 69–88.CrossRefGoogle Scholar
  15. Hao, C., Wei, P., Pei, L., Du, Z., Zhang, Y., Lu, Y., et al. (2017). Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environmental Pollution, 223, 507–516.CrossRefGoogle Scholar
  16. McCullough, C. D. (2015). Consequences and opportunities from river breach and decantof an acidic mine pit lake. Ecological Engineering,85, 328–338.CrossRefGoogle Scholar
  17. Nichela, D., Carlos, L., & García Einschlag, F. (2008). Autocatalytic oxidation of nitrobenzene using hydrogen peroxide and Fe(III). Applied Catalysis B-Environment,82, 11–18.CrossRefGoogle Scholar
  18. Nichela, D. A., Donadelli, J. A., Caram, B. F., Haddou, M., Rodriguez Nieto, F. J., Oliveros, E., et al. (2015). Iron cycling during the autocatalytic decomposition of benzoic acidderivatives by Fenton-like and photo-Fenton techniques. Applied Catalysis B-Environment,170, 312–321.CrossRefGoogle Scholar
  19. Nichela, D., Haddou, M., Benoit-Marquié, F., Maurette, M.-T., Oliveros, E., & García Einschlag, F. S. (2010). Degradation kinetics of hydroxy and hydroxynitro derivatives of benzoic acid by fenton-like and photo-fenton techniques: A comparative study. Applied Catalysis B-Environment,98, 171–179.CrossRefGoogle Scholar
  20. Nixdorf, B., Lessmann, D., & Deneke, R. (2005). Mining lakes in a disturbed landscape: Application of the EC Water Framework Directive and future management strategies. Ecological Engineering,24, 67–73.CrossRefGoogle Scholar
  21. Ohashi, Y., Kan, Y., Watanabe, T., Honda, Y., & Watanabe, T. (2007). Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Organic and Biomolecular Chemistry,5, 840–847.CrossRefGoogle Scholar
  22. Olszyna, K. J., Meagher, J. F., & Bailey, E. M. (1988). Gas-Phase, cloud and rain-water measurements of hydrogen peroxide at a high elevation site. Atmospheric Environment,22, 1699–1706.CrossRefGoogle Scholar
  23. Pedrozo, F., Kelly, L., Diaz, M., Temporetti, P., Baffico, G., Kringel, R., et al. (2001). First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia, 452, 129–137.CrossRefGoogle Scholar
  24. Pignatello, J. J., Oliveros, E., & Mac Kay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology,36, 1–84.CrossRefGoogle Scholar
  25. Qin, J., Li, H., Lin, C., & Chen, G. (2013). Can rainwater induce Fenton-driven degradation of herbicides in natural waters? Chemosphere,92, 1048–1052.CrossRefGoogle Scholar
  26. Rae, T. (1998). An introduction to wastewater treatment. London: The Chartered Institution of Water and Environmental Management. (ISBN 1-870752-34-1. 66).Google Scholar
  27. Rahmawati, N., Ohashi, Y., Watanabe, T., Honda, Y., & Watanabe, T. (2005). Ceriporic acid B, an Extracellular metabolite of Ceriporiopsis subvermispora, suppresses the depolymerization of cellulose by the fenton reaction. Biomacromolecules,6, 2851–2856.CrossRefGoogle Scholar
  28. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry. Chemical equilibria and rates in natural waters. New York: Wiley-Interscience.Google Scholar
  29. Varekamp, J. C. (2008). The volcanic acidification of glacial Lake Caviahue, Province of Neuquen, Argentina. Journal of Volcanology Geothermal Research,178, 184–196.CrossRefGoogle Scholar
  30. Vermilyea, A. W., & Voelker, B. M. (2009). Photo-fenton reaction at near neutral pH. Environmental Science and Technology,43, 6927–6933.CrossRefGoogle Scholar
  31. von Sonntag, C. (2008). Advanced oxidation processes: mechanistic aspects. Water Science and Technology,58, 1015–1021.CrossRefGoogle Scholar
  32. Wang, Y., Lin, X., Shao, Z., Shan, D., Li, G., & Irini, A. (2017). Comparison of Fenton, UV-Fenton and Nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: role of complexation of Fe3+ with hydroxyl group in phloroglucinol. The Chemical Engineering Journal,313, 938–945.CrossRefGoogle Scholar
  33. Wols, B. A., & Hofman-Caris, C. H. M. (2012). Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research,46, 2815–2827.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University (IAU) 2019

Authors and Affiliations

  1. 1.Instituto de Biodiversidad y Medioambiente (INIBIOMA) Universidad Nacional del Comahue CONICETSan Carlos De BarilocheArgentina
  2. 2.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Universidad Nacional de La Plata CONICETLa PlataArgentina

Personalised recommendations