Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses

Abstract

This study focuses on the durability of concrete reinforced with alfa fibres against external sulphatic attack and thermal stresses. Several mix design and tests were made of three types of concrete reinforced with alfa fibres (AC-0.1, AC-1 and AC-1.5; respectively, 0.1%, 1%, 1.5% of alfa fibres in volume), as well as two control concretes: ordinary concrete (OC) and polypropylene fibre-reinforced concrete (PC). To study the external sulphatic attack, the different types of concrete underwent two ageing protocols: complete or total immersion, and immersion/drying at 60 °C as an accelerated ageing protocol in a Na2SO4 solution with a concentration of 12.5% by weight. For the exposure of the various concretes to thermal stresses, three temperature levels were used. The results showed that the concrete reinforced with 1% of alfa fibres is the most optimal compared to the control concrete, and could enable to produce green and durable structural concretes based on untreated alfa fibres.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Achour, A., Ghomari, F., & Belayachi, N. (2017). Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology,31, 1938–1962.

  2. Ali, M. (2014). Seismic performance of coconut-fibre-reinforced-concrete columns with different reinforcement configurations of coconut-fibre ropes. Construction and Building Materials,70, 226–230.

  3. Brunetaud X. (2005). Etude de l’influence des différents paramètres et leurs interactions sur la cinétique et l’amplitude de la réaction sulfatique interne au béton, Thèse de doctorat en Physico-chimie des Matériaux, Ecole Centrale de Paris.

  4. Brunetaud, X., Linder, R., Divet, L., Duragrin, D., & Damidot, D. (2007). Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation. Materials and Structures,40(6), 567–578.

  5. Cavdar, A. (2014). Investigation of freeze–thaw effects on mechanical properties of fiber reinforced cement mortars. Composites: Part B,58, 463–472.

  6. Coutts, R. S. (2005). A review of Australian research into natural fiber cement composites. Cement and Concrete Composites,27, 518–526.

  7. Das, M., & Chakraborty, D. (2008). Evaluation of Improvement of Physical and Mechanical Properties of Bamboo Fibers Due to Alkali Treatment. Journal of Applied Polymer Science,107, 522–527.

  8. Dupas, G., Mougeot, D., & Cali, V. (2008). Etude de la durabilité des BAP et des BHP soumis à des attaques extérieures, Projet de fin d’études 5ème Année Génie Civil. Orléans: Ecole Polytechnique de l’Université d’Orléans.

  9. Géneau C. (2006). Procédé d’élaboration d’agromatériau composite naturel par extrusion bivis et injection moulage de tourteau de tournesol. Thèse de doctorat, Institut National Polytechnique De Toulouse (pp. 1–380).

  10. Ghrici, M., Kenai, S., & Meziane, E. (2006). Mechanical and durability properties of cement mortar with algeria, natural pozzolana. Journal of Materials Science,41(21), 6965–6972.

  11. Haiping, Y., Rong, Y., Haimping, C., Dong, H. L., & Chuguang, Z. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel,86, 1781–1788.

  12. John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composite,29, 187–207.

  13. Kevin B. (2006). Etude des propriétés hydriques et des mécanismes d’altération de pierres calcaires à forte porosité, Thèse de doctorat en Sciences des Matériaux, Université d’Orléans.

  14. Khelifa M. R. (2009). Effet de l’attaque sulfatique externe sur la durabilité des bétons autoplaçants, Thèse de doctorat en Génie Civil, Ecole Polytechnique de l’Université d’Orléans.

  15. Khelifa, M. R., & Guessasma, S. (2013). New computational model based on finite element method to quantify damage evolution due to external sulfate attack on self-compacting concretes. Computer Aided Civil and Infrastructure Engineering,28, 260–272.

  16. Khelifa, M. R., Leklou, N., Bellal, T., Hebert, R. L., & Ledesert, A. B. (2016). Is alfa a vegetal fibre suitable for making green reinforced concrete? European Journal of Environmental and Civil Engineering,22, 1–21.

  17. Kriker, A., Debicki, G., Bali, A., Khenfer, M., & Chabannet, M. (2005). Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cement and Concrete Composites,27, 554–564.

  18. Laffitte, M. (2008). Etude de la durabilité des bétons autoplaçants, Projet de fin d’études 5ème Année Génie Civil. Orléans: Ecole Polytechnique de l’Université d’Orléans.

  19. Lane, D. S., & Ozyildirim, H. C. (1999). Evaluation of the potential for internal sulfate attack through adaptation of ASTM C 342 and the Duggan test. Cement, Concrete and Aggregates,21(1), 43–58.

  20. Li, Y., Mai, Y., & Ye, L. (2000). Sisal fiber and its composites: a review of recent developments. Composites Science and Technology,60, 2037–2055.

  21. Merta, I., & Tschegg, E. K. (2013). Fracture energy of natural fibre reinforced concrete. Construction and Building Materials,40, 991–997.

  22. Molez, L., Bian, H., & Prince-Agbodjan, W. (2012). Résistance au gel/dégel des BFUHP: Compétition entre endommagement et cicatrisation. Chambéry, Savoie: XXXe Rencontres de l’AUGC-IBPSA.

  23. Nguyen L. H. (2013). Béton de structure à propriétés d’isolation thermiques améliorées: Approche expérimentale et modélisation numérique, Thèse de doctorat en Génie Civil, Université de Cergy-Pontoise.

  24. Noumowé A. (1995). Effet des hautes températures sur le béton (20–600°C): Cas particulier du béton à hautes performances, Thèse de doctorat, INSA de Lyon.

  25. Ouajai, S., & Shanks, R. A. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability,89, 327–335.

  26. Rahim, M., Douzane, O., Le Tran, A. D., Promis, G., Laidoudi, B., Crigny, A., et al. (2015). Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy and Buildings,88, 91–99.

  27. Razafinjato R. N. (2015). Comportement des bétons à haute température: influence de la nature du granulat, Thèse de doctorat en génie Civil, Université de Cergy-Pontoise.

  28. Rong, M. R., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2008). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology,61, 1437–1447.

  29. Sellami, A., Merzoud, M., & Amziane, S. (2013). Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Construction and Building Materials,47, 1117–1124.

  30. Sudin, R., & Swamy, N. (2006). Bamboo and wood fiber cement composites for sustainable infrastructure regeneration. Journal of Materials Science,41, 6917–6924.

  31. Tian, J., Xiaowei, W., Zheng, Y., Shaowei, H., Ren, W., Yinfei, D., et al. (2019). Investigation of damage behaviors of ECC-to-concrete interface and damage prediction model under salt freeze-thaw cycles. Construction and Building Materials,226, 238–249.

  32. Toledo Filho, R. D., Ghavami, K., England, G. L., & Scrivener, K. (2003). Development of vegetable fiber-mortar composites of improved durability. Cement & Concrete Composites,25, 185–196.

  33. Tonoli, G., Savastano, H., Jr., Fuente, E., Negro, C., Blanco, A., & Rocco, L. F. (2010). Eucalyptus pulp fibers as alternative reinforcement to engineered cement-based composites. Industrial Crops and Products,31, 225–232.

  34. Vi D. T. V. (2011). Matériaux composites à fibres naturelles/polymère biodégradables ou non, Thèse de doctorat en Matériaux Polymères et Composites, Université de Grenoble et Université des Sciences de Hochiminh Ville.

  35. Xing Z. (2011). Influence de la nature minéralogique des granulats sur leur comportement et celui du béton à haute température, Thèse de doctorat en Génie Civil, Université de Gergy- Pontoise.

  36. Yermak N. (2015). Comportements à hautes températures des bétons additionnés de fibres, Thèse de doctorat en Génie Civil de l’Université de Cergy-Pontoise.

Download references

Acknowledgements

The authors wish to thank the staff of L2MGC laboratory of Cergy-Pontoise University for their assistance and help during the several tests conducted throughout this work.

Author information

Correspondence to Samy Mezhoud.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziane, S., Khelifa, M., Mezhoud, S. et al. Durability of concrete reinforced with alfa fibres exposed to external sulphate attack and thermal stresses. Asian J Civ Eng (2020). https://doi.org/10.1007/s42107-020-00228-0

Download citation

Keywords

  • Concrete
  • Alfa fibres
  • Durability
  • Sulphatic attack
  • Thermal stress