Advertisement

Asian Journal of Civil Engineering

, Volume 20, Issue 2, pp 261–267 | Cite as

Numerical analysis of non-restrained long-span steel beams at high temperatures due to fire

  • Abdelhak KadaEmail author
  • Belkacem Lamri
Original Paper
  • 8 Downloads

Abstract

Steel structures are being increasingly used because of their excellent structural efficiency and flexibility in construction. However, in the case of fire they suffer a great reduction of yield stress and Young’s modulus under the effect of high temperatures. For an economic fire safety design of unrestrained solid steel beams under lateral torsional buckling, it is necessary to include geometrical imperfections and evaluate their fire resistance for the appropriate load level condition. The main objective of this paper is to investigate the mechanical behavior of solid unrestrained steel I-beams under uniform temperature increase when subjected to fire, simulated by the standard ISO 834. ANSYS FE models are produced to study a series of IPE600 beams with initial imperfection effects created from the first eigenmode analysis with the aim of estimating the temperature at which the failure occurs. The numerical results include lateral as well as midspan vertical displacements, under uniformly distributed mechanical load and uniform temperature increase. The analysis also estimates the critical load and critical temperatures in steel beam cross sections. Comparison of results producing critical temperatures and bending resistance in steel sections has been made with the analytical ones from the Eurocode 3 part 1–2 and design guides.

Keywords

Solid steel beam Lateral torsional buckling ANSYS ISO 834 fire Mechanical analysis 

Notes

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. ANSYS Academic Research. Releases 14.0. (2011). ANSYS help system. Canonsburg: ANSYS.Google Scholar
  2. Boissonnade, N. and Somja, H. (2012). Influence of Imperfections in FEM Modeling of Lateral Torsional Buckling. Proceedings of the Annual Stability Conference, Structural Stability Research Council. (pp. 1–15) Grapevine, Texas.Google Scholar
  3. EN 1993-1-1 (2005) Eurocode 3: Design of steel structures. Part1.1: General rules for buildings. Belgium: CEN, Brussels.Google Scholar
  4. Elefir-EN version 1.5.8 (2015). University of Aveiro & University of Liege, http://elefiren.web.ua.pt
  5. Galea, Y. (2002). Déversement elastique d’une poutre à section bi-symétrique soumise à des moments d’extrémité et une charge répartie ou concentrée, CTICM. Construction Métallique, 2(2002), 59–83.Google Scholar
  6. Kada, A., Lamri, B., Mesquita, L. M. R., & Bouchair, A. (2016). Finite element analysis of steel beams with web apertures under fire condition. Asian Journal of Civil Engineering, 17(8), 1035–1054.Google Scholar
  7. Lamri, B., Mesquita, L. M. R., Kada, A., & Piloto, P. A. G. (2017). Behavior of cellular beams protected with intumescent coatings. Fire Research, 1(1), 7–12.  https://doi.org/10.4081/fire.2017.27.Google Scholar
  8. Mesquita, L. M. R., Piloto, P. A. G., Vaz, M. A. P., & Vila Real, P. M. M. (2005). Experimental and numerical research on the critical temperature of laterally unrestrained steel I beams. Journal of Constructional Steel Research, 61(10), 1435–1446.CrossRefGoogle Scholar
  9. Technical Committee Structural Stability European Convention for Constructional Steelwork. (2006). Rules for member stability in EN 1993-1-1: Background documentation and design guidelines. (p. 259). ECCSGoogle Scholar
  10. Trahair, N. S. (1993). Flexural-torsional buckling of structures (p. 357). 1st ed. London, Melbourne : Spon.Google Scholar
  11. Vales, J., & Stan, T.-C. (2017). FEM Modelling of lateral-torsional buckling using shell and solid elements. Procedia Engineering, 190(2017), 464–471.CrossRefGoogle Scholar
  12. Vila Real P., Franssen J-M (2010) Fire design of steel structures (pp. 428), Ernst & SohnGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.L.S.G.R., Faculty of Civil Engineering and ArchitectureHassiba Benbouali University of ChlefChlefAlgeria

Personalised recommendations