Advertisement

Development of Nitrogen Fertilizer Topdressing Model for Winter Wheat Based on Critical Nitrogen Dilution Curve

  • Yang Wang
  • Youliang YeEmail author
  • Yufang Huang
  • Yanan Zhao
  • Ning Ren
  • Wen Fu
  • Songhua Yue
Research
  • 16 Downloads

Abstract

Critical nitrogen (Nc) dilution curve and its extended N nutrient index (NNI) in previous study was only be applied to wheat for N status diagnosis. This research improved this model and further established the N topdressing model which can be quantify the N topdressing rate when NNI < 1. To facilitate the estimate of the Nc concentration, the determination of basal stem tissue sap nitrate (Nit) concentration as a rapid and operational way was used to characterize N status in this study. The results revealed that N dilution curve in this study specific to winter wheat could be used to establish the N nutrition status. There was significantly positive relationship between the Nit concentration and whole plant N concentration at each growth stage. Moreover, the Nit concentration linearly and positively correlated to the N fertilizer application rate, then deducing the N fertilizer topdressing rate per 100 Nit unit, which finally established the N fertilizer topdressing model: N topdressing rate = (critical Nit − actual Nit) × N topdressing rate per 100 Nit unit. The N dilution curve-based model will offer technical support for managing the precise application of N during the growth period of wheat crops.

Keywords

Wheat Critical nitrogen dilution curve Topdressing model Nitrate concentration 

Abbreviations

Nc

Critical N concentration

Na

Actual N concentration

NNI

Nitrogen nutrient index

Nit

Basal stem tissue sap nitrate

Nitc

Critical Nit

DM

Dry matter

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFD0200100) and the National Natural Science Foundation of China (No. 31471935).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ata-Ul-Karim, S. T., Liu, X. J., Lu, Z. Z., Zheng, H. B., Cao, W. X., & Zhu, Y. (2017). Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve. Field Crops Research,201, 32–40.CrossRefGoogle Scholar
  2. Bélec, C., Villeneuve, S., Coulombe, J., & Tremblay, N. (2001). Influence of nitrogen fertilization on yield, hollow stem incidence and sap nitrate concentration in broccoli. Canadian Journal of Plant Science,81, 765–772.CrossRefGoogle Scholar
  3. Chen, P. F., & Zhu, Y. Q. (2013). A new method for winter wheat critical nitrogen curve determination. Agronomy Journal,105, 1839–1846.CrossRefGoogle Scholar
  4. Colnenne, C., Meynard, J. M., Reau, R., Justes, E., & Merrien, A. (1998). Determination of a critical nitrogen dilution curve for winter oilseed rape. Annals of Botany,81, 311–317.CrossRefGoogle Scholar
  5. Damisch, W., & Wiberg, A. (2010). Biomass yield-a topical issue in modern wheat breeding programmes. Plant Breeding,107, 11–17.CrossRefGoogle Scholar
  6. Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research,74, 37–66.CrossRefGoogle Scholar
  7. Greenwood, D. J., Neeteson, J. J., & Draycott, A. (1986). Quantitative relationships for the dependence of growth rate of arable crops on their nitrogen content, dry weight and aerial environment. Plant and Soil,91, 281–301.CrossRefGoogle Scholar
  8. He, Z. Y., Qiu, X. L., Ataulkarim, S. T., Li, Y. D., Liu, X. J., Cao, Q., et al. (2017). Development of a critical nitrogen dilution curve of double cropping rice in south China. Frontiers in Plant Science,8, 638.CrossRefGoogle Scholar
  9. Hoel, O. B. (1999). Determination of nitrogen status in winter wheat by measuring basal stem tissue sap nitrate concentration. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science,49, 82–91.CrossRefGoogle Scholar
  10. Jamaati-e-somarin, S., Zabihi-e-mahmoodabad, R., Yari, A., Khayatnezhad, M., & Gholamin, R. (2010). Study of agronomical nitrogen use efficency of durum wheat, affected by nitrogen fertilizer and plant density. World Applied Sciences Journal,11, 674–681.Google Scholar
  11. Jia, L. L., Buerkert, A., Chen, X. P., Roemheld, V., & Zhang, F. S. (2004). Low-altitude aerial photography for optimum N fertilization of winter wheat on the North China Plain. Field Crops Research,89, 389–395.CrossRefGoogle Scholar
  12. Justes, E., Mary, B., Meynard, J. M., & Huche-Thelier, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany,74, 397–407.CrossRefGoogle Scholar
  13. Lazarević, B., Rubinić, V., & Bensa, A. (2011). Leaf relative chlorophyll content and plant sap nitrate-nitrogen concentration as indicators for predicting nitrogen status in maize (Zea mays L.). Növénytermelés,60, 101–104.Google Scholar
  14. Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage: theory and practices for crop N management. European Journal of Agronomy,28, 614–624.CrossRefGoogle Scholar
  15. Lemaire, G., Oosterom, E. V., Sheehy, J., Jeuffroy, M. H., Massignam, A., & Rossato, L. (2007). Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Research,99, 91–106.CrossRefGoogle Scholar
  16. Lemaire, G., & Salette, J. (1984). Relation entre dynamique de croissance et dynamique de prelevement d’azote pour un peuplement de graminees fourrageres. I. Etude de l’effet du milieu. Agronomie,4, 423–430.Google Scholar
  17. Li, Z. P., Feng, H., & Song, M. D. (2015). Critical nitrogen dilution curve and nitrogen nutrition index of winter wheat in guanzhong plain. Transactions of the Chinese Society of Agricultural Engineering,31, 135–141. (In Chinese with English Abstract).Google Scholar
  18. Mohammd, A., Hassan, G., & Hamidreaza, M. (2011). Effect of plant density and nitrogen rate on yied and yield components of wheat in wild oat-infested condition. Advances in Environmental Biology,5, 3084–3090.Google Scholar
  19. Peng, S. B., Cassman, K. G., & Kropff, M. J. (1995). Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics. Crop Science,35, 1627–1630.CrossRefGoogle Scholar
  20. Peng, S. B., Garcia, F. V., Laza, R. C., Sanico, A. L., Visperas, R. M., & Cassman, K. G. (1996). Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research,47, 243–252.CrossRefGoogle Scholar
  21. Plénet, D., & Lemaire, G. (1999). Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant and Soil,216, 65–82.CrossRefGoogle Scholar
  22. Prost, L., & Jeuffroy, M. H. (2007). Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agronomy for Sustainable Development,27, 321–330.CrossRefGoogle Scholar
  23. Ravier, C., Meynard, J. M., Cohan, J. P., Gate, P., & Jeuffroy, M. H. (2017). Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat. European Journal of Agronomy,89, 16–24.CrossRefGoogle Scholar
  24. Sadras, V. O., & Lemaire, G. (2014). Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Research,164, 54–64.CrossRefGoogle Scholar
  25. Singh, R. K., Kumar, P., Prasad, B., Das, A. K., & Singh, S. B. (2016). Effect of split application of nitrogen on performance of wheat (Triticum aestivum L.). International Journal of Agricultural Sciences,12, 32–37.CrossRefGoogle Scholar
  26. Song, M. D., Li, Z. P., & Feng, H. (2016). Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering,32, 119–126. (In Chinese with English Abstract).Google Scholar
  27. Tei, F., Benincasa, P., & Guiducci, M. (2002). Critical nitrogen concentration in processing tomato. European Journal of Agronomy,18, 45–55.CrossRefGoogle Scholar
  28. Thompson, T. L., Ottman, M. J., & Rileysaxton, E. (2004). Basal stem nitrate tests for irrigated malting barley. Agronomy Journal,96, 516–524.CrossRefGoogle Scholar
  29. Ulrich, A. (1952). Physiological bases for assessing the nutritional requirements of plants. Annual Review of Plant Physiology,3, 207–228.CrossRefGoogle Scholar
  30. Wollring, J., Reusch, S., (2001). Variable nitrogen application based on crop sensing. Proceedings—Fertiliser Society, United Kingdom.Google Scholar
  31. Xue, C., Schulte auf’m, E.G., Rossmann, A., Schuster, R., Koehler, P., Muhling, K.H., (2016). Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Frontiers in Plant Science, 7, 738.Google Scholar
  32. Yue, S. H., Liu, C. Y., Huang, Y. F., & Ye, Y. L. (2016). Simulating critical nitrogen dilution curve and modeling nitrogen nutrition index in winter wheat in central Henan area. Acta Agronomica Sinica,42, 909–916. (In Chinese with English Abstract).CrossRefGoogle Scholar
  33. Yue, S. C., Meng, Q. F., Zhao, R. F., Li, F., Chen, X. P., Zhang, F. S., et al. (2012). Critical nitrogen dilution curve for optimizing nitrogen management of winter wheat production in the north China plain. Agronomy Journal,104, 523–529.CrossRefGoogle Scholar
  34. Zhang, F. S. (2011). Soil testing and fertilization recommendation. Beijing: China Agricultural University Press. (In Chinese).Google Scholar
  35. Zhang, J. J., Du, P., Guo, J. B., Cao, R., Zhang, J., & Ma, X. M. (2017). Study of critical nitrogen concentration model and nitrogen nutrition diagnosis in winter wheat with different N efficiency. Journal of Triticeae Crops,37, 1480–1488. (In Chinese with English Abstract).Google Scholar
  36. Zhao, B., Yao, X., Tian, Y. C., Liu, X. J., Ata-UI-Karim, S. T., Ni, J., et al. (2014). New critical nitrogen curve based on leaf area index for winter wheat. Agronomy Journal,106, 379–389.CrossRefGoogle Scholar
  37. Zhao, B., Yao, X., Tian, Y. C., Liu, X. J., Cao, W. X., & Zhu, Y. (2012). Accumulative nitrogen deficit models of wheat aboveground part based on critical nitrogen concentration. Chinese Journal of Applied Ecology,23, 3141–3148. (In Chinese with English Abstract).PubMedGoogle Scholar
  38. Ziadi, N., Gilles, B., Claessens, A., Lefebvre, L., Cambouris, A. N., Tremblay, N., et al. (2010). Determination of a critical nitrogen dilution curve for spring wheat. Agronomy Journal,102, 241–250.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yang Wang
    • 1
  • Youliang Ye
    • 1
    Email author
  • Yufang Huang
    • 1
  • Yanan Zhao
    • 1
  • Ning Ren
    • 1
  • Wen Fu
    • 1
  • Songhua Yue
    • 1
  1. 1.Agricultural Green Development Engineering Technology Research Center, College of Resources and EnvironmentHenan Agricultural UniversityZhengzhouChina

Personalised recommendations