Advertisement

Density Effect and Economic Threshold of Purple Nutsedge (Cyperus rotundus L.) in Peanut (Arachis hypogaea L.)

  • Long Du
  • Xiao Li
  • Jianhong ChenEmail author
  • Xiaojing Jiang
  • Qian Ju
  • Chunjuan Qu
  • Mingjing QuEmail author
Research

Abstract

Peanut is one of the most important oilseed crop grown in China. Purple nutsedge (Cyperus rotundus L.) is a competitive perennial weed, which infests peanut fields in south China and causes considerable peanut yield losses. Information on the interference of purple nutsedge on peanut and its economic threshold (ET) in field is an integral component of integrated weed management system. This will help growers use herbicides more legitimately and reduce the amount of herbicide that is discharged into the environment. 2-year experiments were conducted to assess the infestation effects of purple nutsedge on peanut in pure stands (nutsedge density 0, 5, 10, 20, 40, 80, 120 and 160 plants m−2) and in natural weed infestation, respectively. Furthermore, the ET of purple nutsedge in peanut was determined according the quadratic equation reported by Cousens. The biomass of purple nutsedge with a density of 160 plants m−2 in pure stand was less than that of natural weed infestation treatment. Compared with natural weed infestation treatments, lower yield loss in treatment of nutsedge 160 plants m−2 indicated weaker interference on peanut. But the ET of purple nutsedge in peanut came down to 4–5 plants m−2. The higher price of peanut than the cost of weed control and very high efficiency (90%) of imazapic could be the probable reasons.

Keywords

Peanut Purple nutsedge Interference Economic threshold 

Notes

Acknowledgements

This work was financially supported by the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2018E21). The authors thank all the workers for assistance in conducting this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered as a conflict of interest.

References

  1. Bendixen, L. E., & Nandihalli, U. B. (1987). Worldwide distribution of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technology, 1, 61–65.CrossRefGoogle Scholar
  2. Boyd, N. S. (2015). Evaluation of preemergence herbicides for purple nutsedge (Cyperus rotundus) control in tomato. Weed Technology, 29, 480–487.CrossRefGoogle Scholar
  3. Cousens, R. (1985). A simple model relating yield loss to weed density. Annals of Applied Biology, 107, 239–252.CrossRefGoogle Scholar
  4. Cousens, R. (1987). Theory and reality of weed control thresholds. Plant Protection Quarterly, 2, 13–20.Google Scholar
  5. Das, T. K., Paul, A. K., & Yaduraju, N. T. (2014). Density-effect and economic threshold of purple nutsedge (Cyperus rotundus) in soybean. Journal of Pest Science, 87, 211–220.CrossRefGoogle Scholar
  6. Das, T. K., Sakhuja, P. K., & Zelleke, H. (2010). Herbicide efficacy and non-target toxicity in highland rainfed maize of eastern ethiopia. International Journal of Pest Management, 56, 315–325.CrossRefGoogle Scholar
  7. Das, T. K., & Yaduraju, N. T. (1999). Effect of weed competition on the growth, nutrient uptake and yield of wheat as affected by irrigation and fertilizers. The Journal of Agricultural Science, 133, 45–51.CrossRefGoogle Scholar
  8. Das, T. K., & Yaduraju, N. T. (2008). Effect of soil solarization and crop husbandry practices on weed species competition and dynamics in soybean-wheat cropping system. Indian Journal of Weed Science, 40, 1–5.Google Scholar
  9. Das, T. K., & Yaduraju, N. T. (2011). Effects of missing-row sowing supplemented with row spacing and nitrogen on weed competition and growth and yield of wheat. Crop and Pasture Science, 62, 48–57.CrossRefGoogle Scholar
  10. Dodamani, B. M., & Das, T. K. (2013). Density and nitrogen effects on interference and economic threshold of common lambsquarters in wheat. Journal of Pest Science, 86, 611–619.CrossRefGoogle Scholar
  11. Dotray, P. A., Baughman, T. A., Keeling, J. W., Grichar, W. J., & Lemon, R. G. (2001). Effect of imazapic application timing on texas peanut (Arachis hypogaea). Weed Technology, 15, 26–29.CrossRefGoogle Scholar
  12. Edenfield, M. W., Brecke, B. J., Colvin, D. L., Dusky, J. A., & Shilling, D. G. (2005). Purple nutsedge (Cyperus rotundus) control with glyphosate in soybean and cotton. Weed Technology, 19, 947–953.CrossRefGoogle Scholar
  13. Gilreath, J. P., & Santos, B. M. (2004). Efficacy of methyl bromide alternatives on purple nutsedge (Cyperus rotundus) control in tomato and pepper. Weed Technology, 18, 341–345.CrossRefGoogle Scholar
  14. Grey, T. L., Bridges, D. C., Prostko, E. P., Eastin, E. F., Johnson, W. C., Vencill, W. K., et al. (2010). Residual weed control with imazapic, diclosulam, and flumioxazin in southeastern peanut (Arachis hypogaea). Peanut Science, 30, 22–27.CrossRefGoogle Scholar
  15. Grichar, W. J., Nester, P. R., & Colburn, A. E. (1992). Nutsedge (Cyperus spp.) control in peanuts (Arachis hypogaea) with imazethapyr. Weed Technology, 6, 396–400.CrossRefGoogle Scholar
  16. Hazra, D., Das, T. K., & Yaduraju, N. T. (2011). Interference and economic threshold of horse purslane (Trianthema portulacastrum) in soybean cultivation in northern india. Weed Biology and Management, 11, 72–82.CrossRefGoogle Scholar
  17. Li, Q., Du, L., Yuan, G., Guo, W., Li, W., & Wang, J. (2016). Density effect and economic threshold of Japanese brome (Bromus japonicus Houtt.) in wheat. Chilean Journal of Agricultural Research, 76, 441–447.CrossRefGoogle Scholar
  18. Matocha, M. A., Grichar, W. J., Senseman, S. A., Gerngross, C. A., Brecke, B. J., & Vencill, W. K. (2003). The persistence of imazapic in peanut (Arachis hypogaea) crop rotations. Weed Technology, 17, 325–329.CrossRefGoogle Scholar
  19. Morales-Payan, J. P., Stall, W. M., Shilling, D. G., Charudattan, R., Dusky, J. A., & Bewick, T. A. (2003). Above- and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Science, 51, 181–185.CrossRefGoogle Scholar
  20. Motics, T. N., Locascio, S. J., Gilreath, J. P., & Stall, W. M. (2003). Season-long interference of yellow nutsedge (Cyperus esculentus) with polyethylene-mulched bell pepper (Capsicum annuum). Weed Technology, 17, 543–549.CrossRefGoogle Scholar
  21. Motis, T. N., & Locascio, S. J. (2004). Critical yellow nutsedge-free period for polyethylene-mulched bell pepper. HortScience, 39, 1045–1049.CrossRefGoogle Scholar
  22. Patterson, D. T. (1982). Shading responses of purple and yellow nutsedges (Cyperus rotundus and C. esculentus). Weed Science, 30, 25–30.CrossRefGoogle Scholar
  23. Reed, T. V., Boyd, N. S., & Dittmar, P. J. (2017). Application timing influences purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) susceptibility to EPTC and fomesafen. Weed Technology, 30, 743–750.CrossRefGoogle Scholar
  24. Rogers, H. H., Runion, G. B., Prior, S. A., Price, A. J., Torbert, H. A., & Gjerstad, D. H. (2008). Effects of elevated atmospheric CO2 on invasive plants: Comparison of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). Journal of Environmental Quality, 37, 395–400.CrossRefGoogle Scholar
  25. Santos, B. M., Morales-Payan, J. P., Stall, W. M., Bewick, T. A., & Shilling, D. G. (1997). Effects of shading on the growth of nutsedges (Cyperus spp.). Weed Science, 45, 670–673.CrossRefGoogle Scholar
  26. Shang, C. M. (2006). Occurrence and prevention of purple nutsedge (Cyperus rotundus). Anhui Agricultural Science Bulletin, 12, 79.Google Scholar
  27. Vyas, M. D., & Jain, A. K. (2003). Effect of pre- and post-emergence herbicides on weed control and productivity of soybean (Glycine max). Indian Journal of Agronomy, 48, 309–311.Google Scholar
  28. Webster, T. M., Grey, T. L., & Ferrell, J. A. (2016). Purple nutsedge (Cyperus rotundus) tuber production and viability are reduced by imazapic. Weed Science, 65, 97–106.CrossRefGoogle Scholar
  29. Wilkerson, G. G., Wiles, L. J., & Bennett, A. C. (2002). Weed management decision models: Pitfalls, perceptions, and possibilities of the economic threshold approach. Weed Science, 50, 411–424.CrossRefGoogle Scholar
  30. Yang, Z. (2012). Control techniques of management for purple nutsedge (Cyperus rotundus). Pesticide Market News, 5, 41.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pest Bio-control LabShandong Peanut Research InstituteQingdaoChina
  2. 2.Quanzhou Institute of Agricultural ScienceQuanzhouChina

Personalised recommendations