International Journal of Plant Production

, Volume 13, Issue 1, pp 59–72 | Cite as

Nitrogen Utilization and Yield Determination of Spring Mediterranean Chickpea as Influenced by Planting Date and Environmental Conditions

  • Sideris Fotiadis
  • Spyridon D. KoutroubasEmail author
  • Christos A. DamalasEmail author


Growth, yield components, and N utilization patterns of spring chickpea (Cicer arietinum L.) cultivars were investigated for 2 years under Mediterranean conditions, and the associations with seed yield were identified. Three desi-type cultivars (Andros, Kassos, and Serifos) and one kabuli-type cultivar (Zehavit-27) were assessed under March and April planting. April planting resulted in higher early dry matter and N accumulation, which were not reflected in increased seed yield compared with March planting. Chickpea growth was co-limited by both source and sink limitations induced by the environment during the seed filling period. Most of the variation (> 94%) in seed yield was accounted for by the variation in seeds m−2 rather than that in seed size. The seed number was reduced on average by 7–18.2 seeds m−2 day−1 of planting delay, with the penalty being higher the year with the greater yield potential. In addition, the number of seeds m−2 was reduced by 21% and by 18% for every degree Celsius increase in mean and maximum temperature during the early reproductive period, respectively. Biomass production efficiency (33.9–51.6 kg kg−1) was greater than nitrogen utilization efficiency (17.8–27.2 kg kg−1). The proportion of total plant N allocated to the seeds at maturity (i.e., nitrogen harvest index) was the limiting factor for enhanced N utilization. Overall, March planting may ameliorate growth limitations by bringing the reproductive stage earlier and, consequently, it may be more advantageous in terms of both seed yield and seed quality compared with April planting.


Chickpea cultivars Dry matter Grain yield Growth Spring planting 



Biomass production efficiency


Modified biomass production efficiency


Crop growth rate


Days after emergence


Economic nitrogen uptake rate


Growth stage


Individual seed weight


Nitrogen harvest index


Nitrogen uptake rate


Nitrogen utilization efficiency


Seed nitrogen uptake rate



This research is part of the first author’s PhD Thesis.

Compliance with Ethical Standards

Conflict of Interest

No potential conflict of interest was reported by the authors.


  1. Anwar, M. R., McKenzie, B. A., & Hill, G. D. (2003). The effect of irrigation and sowing date on crop yield and yield components of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate. Journal of Agricultural Science, 141, 259–271.CrossRefGoogle Scholar
  2. Auld, D. L., Bettis, B. L., Crock, J. E., & Kephart, K. D. (1988). Planting date and temperature effects on germination, emergence, and seed yield of chickpea. Agronomy Journal, 80, 909–914.CrossRefGoogle Scholar
  3. Ayaz, S., McKenzie, B. A., Hill, G. D., & McNeil, D. L. (2004). Variability in yield of four grain legume species in a subhumid temperate environment I. Yields and harvest index. Journal of Agricultural Science, 142, 9–19.CrossRefGoogle Scholar
  4. Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32, 921–950.CrossRefGoogle Scholar
  5. Basu, P. S., Masood, A., & Chaturvedi, S. K. (2009). Terminal heat stress adversely affects chickpea productivity in northern India–Strategies to improve thermo tolerance in the crop under climate change. In Proceedings of the XXXVIII workshop of the international society for photogrammetry and remote sensing: impact of climate change on agriculture (pp. 189–193). ISRO, Ahmadabad, India.Google Scholar
  6. Beech, D. F., & Leach, G. J. (1989). Effect of plant density and row spacing on the yield of chickpea (cv. Tyson) grown on the Darling Downs, south-eastern Queensland. Australian Journal of Experimental Agriculture, 29, 241–246.CrossRefGoogle Scholar
  7. Berger, J. D., & Turner, N. C. (2007). The ecology of chickpea: evolution, distribution, stresses and adaptation from an agro-climatic perspective. In S. S. Yadav, R. Redden, W. Chen, & B. Sharma (Eds.), Chickpea breeding and management (pp. 47–71). Wallingford, UK: CAB International.CrossRefGoogle Scholar
  8. Board, J. E., Kang, M. S., & Bodrero, M. L. (2003). Yield components as indirect selection criteria for late-planted soybean cultivars. Agronomy Journal, 95, 420–429.CrossRefGoogle Scholar
  9. Bremner, J. M. (1965). Total nitrogen. In C. A. Black, D. D. Evans, J. L. White, L. E. Ensminger, & F. E. Clark (Eds.), Methods of soil analysis, part 2 (pp. 1149–1178). Madison, USA: American Society of Agronomy.Google Scholar
  10. Davies, S. L., Turner, N. C., Siddique, K. H. M., Leport, L., & Plummer, J. A. (1999). Seed growth of desi and kabuli chickpea (Cicer arietinum L.) in a short-season Mediterranean-type environment. Australian Journal of Experimental Agriculture, 39, 181–188.CrossRefGoogle Scholar
  11. Dawson, J. C., Huggins, D. R., & Jones, S. S. (2008). Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Research, 107, 89–101.CrossRefGoogle Scholar
  12. Dwyer, L. M., Anderson, A. M., Stewart, D. W., Ma, B. L., & Tollenaar, M. (1995). Changes in maize hybrid photosynthetic response to leaf nitrogen, from preanthesis to grain fill. Agronomy Journal, 87, 1221–1225.CrossRefGoogle Scholar
  13. European Commission (2013). CAP Reform – an explanation of the main elements. MEMO/13/937, October 2013. European Commission, DG Agriculture and Rural Development, Brussels.Google Scholar
  14. FAO (2014). FAO Statistical databases. FAO. Accessed 02 March 2018.
  15. Fixen, P., Brentrup, F., Bruulsema, T., Garcia, F., Norton, R., & Zingore, S. (2014). Nutrient/fertilizer use efficiency; measurement, current situation and trends, Chapter 1. In P. Drechsel, P. Heffer, H. Magen, R. Mikkelsen, & D. Wichelns (Eds.), Managing water and fertilizer for sustainable agricultural intensification. Paris, France: IFA/IWMI/IPNI/IPI.Google Scholar
  16. Fotiadis, S., Koutroubas, S. D., & Damalas, C. A. (2017). Sowing date and cultivar effects on assimilate translocation in spring Mediterranean chickpea. Agronomy Journal, 109, 2011–2024.CrossRefGoogle Scholar
  17. Gan, Y. T., Liu, P. H., Stevenson, F. C., & McDonald, C. L. (2003). Interrelationships among yield components of chickpea in semiarid environments. Canadian Journal of Plant Science, 83, 759–767.CrossRefGoogle Scholar
  18. Gómez, K. A., & Gómez, A. A. (1984). Statistical procedures for agricultural research. New York, USA: Wiley.Google Scholar
  19. Harper, J. E. (1971). Seasonal nutrient uptake and accumulation patterns in soybeans. Crop Science, 11, 347–350.CrossRefGoogle Scholar
  20. Holzkämper, A., Calanca, P., & Fuhrer, J. (2013). Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach. Agricultural and Forest Meteorology, 168, 149–159.CrossRefGoogle Scholar
  21. Iliadis, C. (2001). Evaluation of six chickpea varieties for seed yield under autumn and spring sowing. Journal of Agricultural Science, 137, 439–444.Google Scholar
  22. Koutroubas, S. D., Fotiadis, S., & Damalas, C. A. (2012). Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in a Mediterranean area. Field Crops Research, 127, 1–8.CrossRefGoogle Scholar
  23. Koutroubas, S. D., Fotiadis, S., & Damalas, C. A. (2016). Grain yield and nitrogen dynamics of Mediterranean barley and triticale. Archives of Agronomy and Soil Science, 62, 484–501.CrossRefGoogle Scholar
  24. Koutroubas, S. D., Fotiadis, S., Damalas, C. A., & Papageorgiou, M. (2014). Grain-filling patterns and nitrogen utilization efficiency of spelt (Triticum spelta) under Mediterranean conditions. Journal of Agricultural Science, 152, 716–730.CrossRefGoogle Scholar
  25. Koutroubas, S. D., & Ntanos, D. A. (2003). Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Research, 83, 251–260.CrossRefGoogle Scholar
  26. Koutroubas, S. D., Papageorgiou, M., & Fotiadis, S. (2009). Growth and nitrogen dynamics of spring chickpea genotypes in a Mediterranean-type climate. Journal of Agricultural Science, 147, 445–458.CrossRefGoogle Scholar
  27. Koutroubas, S. D., Papakosta, D. K., & Doitsinis, A. (2008). Nitrogen utilization efficiency of safflower hybrids and open-pollinated varieties under Mediterranean conditions. Field Crops Research, 107, 6–61.CrossRefGoogle Scholar
  28. Koutroubas, S. D., Veresoglou, D. S., & Zounos, A. (2000). Nutrient use efficiency as a factor determining the structure of herbaceous plant communities in low-nutrient environments. Journal of Agronomy and Crop Science, 184, 261–266.CrossRefGoogle Scholar
  29. Lake, L., Chenu, K., & Sadras, V. O. (2016). Patterns of water stress and temperature for Australian chickpea production. Crop and Pasture Science, 67, 204–215.CrossRefGoogle Scholar
  30. Lake, L., & Sadras, V. O. (2014). The critical period for yield determination in chickpea (Cicer arietinum L.). Field Crops Research, 168, 1–7.CrossRefGoogle Scholar
  31. Latshaw, S. P., Vigil, M. F., & Haley, S. D. (2016). Genotypic differences for nitrogen use efficiency and grain protein deviation in hard winter wheat. Agronomy Journal, 108, 2201–2213.CrossRefGoogle Scholar
  32. Leport, L., Turner, N. C., Davies, S. L., & Siddique, K. H. M. (2006). Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy, 24, 236–246.CrossRefGoogle Scholar
  33. Leport, L., Turner, N. C., French, R. J., Barr, M. D., Duda, R., Davies, S. L., et al. (1999). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. European Journal of Agronomy, 11, 279–291.CrossRefGoogle Scholar
  34. Liao, M. T., Fillery, I. R. P., & Palta, J. A. (2004). Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Functional Plant Biology, 31, 121–129.CrossRefGoogle Scholar
  35. López-Bellido, F. J., López-Bellido, R. J., Khalil, S. K., & López-Bellido, L. (2008). Effect of sowing date on winter kabuli chickpea growth and yield under rainfed Mediterranean conditions. Agronomy Journal, 100, 957–964.CrossRefGoogle Scholar
  36. López-Bellido, L., López-Bellido, R. J., Castillo, J. E., & López-Bellido, F. J. (2004). Chickpea response to tillage and soil residual nitrogen in a continuous rotation with wheat: I. Biomass and seed yield. Field Crops Research, 88, 191–200.CrossRefGoogle Scholar
  37. Mamolos, A. P., Veresoglou, D. S., & Barbayiannis, N. (1995). Plant species abundance and tissue concentrations of limiting nutrients in low-nutrient grasslands: a test of competition theory. Journal of Ecology, 83, 485–495.CrossRefGoogle Scholar
  38. Mansour, E., Merwad, A., Yasin, M., Abdul-Hamid, M. I. E., El-Sobky, E. E. A., & Oraby, H. (2017). Nitrogen use efficiency in spring wheat: genotypic variation and grain yield response under sandy soil conditions. Journal of Agricultural Science, 155, 1407–1423.CrossRefGoogle Scholar
  39. Martin, S. G., Van Acker, R. C., & Friesen, L. F. (2001). Critical period of weed control in spring canola. Weed Science, 49, 326–333.CrossRefGoogle Scholar
  40. Moll, R. H., Kamprath, E. J., & Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 74, 562–564.CrossRefGoogle Scholar
  41. Muurinen, S., Kleemola, J., & Peltonen-Sainio, P. (2007). Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agronomy Journal, 99, 441–449.CrossRefGoogle Scholar
  42. Neugschwandtner, R. W., Wagentristl, H., & Kaul, H. P. (2014). Nitrogen concentrations and nitrogen yields of above ground dry matter of chickpea during crop growth compared to pea, barley and oat in central Europe. Turkish Journal of Field Crops, 19, 136–141.CrossRefGoogle Scholar
  43. Neugschwandtner, R. W., Wagentristl, H., & Kaul, H. P. (2015). Nitrogen yield and nitrogen use of chickpea compared to pea, barley and oat in Central Europe. International Journal of Plant Production, 9, 291–304.Google Scholar
  44. Omoigui, L. O., Alabi, S. O., & Kamara, A. Y. (2007). Response of low-N pool maize population to nitrogen uptake and use efficiency after three cycles of full-sib recurrent selection. Journal of Agricultural Science, 145, 481–490.CrossRefGoogle Scholar
  45. Ortiz-Monasterio, J. I., Sayre, K. D., Rajaram, S., & McMahon, M. (1997). Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 37, 898–904.CrossRefGoogle Scholar
  46. Osaki, M., Shinano, T., & Tadano, T. (1992). Carbon-nitrogen interaction in field crop production. Soil Science and Plant Nutrition, 38, 553–564.CrossRefGoogle Scholar
  47. Phakamas, N., Patanothai, A., Pannangpetch, K., Jogloy, S., & Hoogenboom, G. (2008). Seasonal responses and genotype-by-season interactions for the growth dynamic and development traits of peanut. Journal of Agricultural Science, 146, 311–323.Google Scholar
  48. Rahimizadeh, M., Kashani, A., Zare-Feizabadi, A., Koocheki, A., & Nassiri Mahallati, M. (2010). Nitrogen use efficiency of wheat as affected by preceding crop, application rate of nitrogen. Australian Journal of Crop Science, 4, 363–368.Google Scholar
  49. Rakotoson, T., Dusserre, J., Letourmy, P., Ramonta, I. R., Cao, T. V., Ramanantsoanirina, A., et al. (2017). Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Research, 213, 194–203.CrossRefGoogle Scholar
  50. Redden, R. J., & Berger, J. D. (2007). History and origin of chickpea. In S. S. Yadav, R. Redden, W. Chen, & B. Sharma (Eds.), Chickpea breeding and management (pp. 1–13). Wallingford, UK: CAB International.Google Scholar
  51. Regan, K. L., Siddique, K. H. M., Brandon, N. J., Seymour, M., & Loss, S. P. (2006). Response of chickpea (Cicer arietinum L.) varieties to time of sowing in Mediterranean-type environments of south-western Australia. Animal Production Science, 46, 395–404.CrossRefGoogle Scholar
  52. Saxena, M. C., Saxena, N. P., & Mohammed, A. K. (1988). High temperate stress. In R. J. Summerfield (Ed.), World crops: Cool-season food legumes (pp. 845–856). Dordrecht, The Netherlands: Kluwer Academic Publisher.CrossRefGoogle Scholar
  53. Saxena, N. P., Krishnamurthy, L., & Johansen, C. (1994). Registration of a drought resistant chickpea germplasm. Crop Science, 33, 1424–1426.CrossRefGoogle Scholar
  54. Siddique, K. H. M., Walton, G. H., & Seymour, M. (1993). A comparison of seed yields of winter grain legumes in Western Australia. Australian Journal of Experimental Agriculture, 33, 915–922.CrossRefGoogle Scholar
  55. Singh, K. B., Malhotra, R. S., Saxena, M. C., & Bejiga, G. (1997). Superiority of winter sowing over traditional spring sowing of chickpea in the Mediterranean region. Agronomy Journal, 89, 112–118.CrossRefGoogle Scholar
  56. Soltani, A., Hammer, G. L., Torabi, B., Robertson, M. J., & Zeinali, E. (2006a). Modeling chickpea growth and development: phenological development. Field Crops Research, 99, 1–13.CrossRefGoogle Scholar
  57. Soltani, A., Robertson, M. J., & Manschadi, A. M. (2006b). Modeling chickpea growth and development: Nitrogen accumulation and use. Field Crops Research, 99, 24–34.CrossRefGoogle Scholar
  58. Taggar, G. K., & Singh, R. (2011). Integrated management of insect pests of Rabi pulses. In R. Arora, B. Singh, & A. K. Dhawan (Eds.), Theory and Practice of Integrated Pest Management (pp. 454–472). Jodhpur, India: Scientific Publishers.Google Scholar
  59. Thomson, B. D., Siddique, K. H. M., Barr, M. D., & Wilson, J. M. (1997). Grain legume species in low rainfall Mediterranean-type environments I. Phenology and seed yield. Field Crops Research, 54, 173–187.CrossRefGoogle Scholar
  60. Toker, C., Lluch, C., Tejera, N. A., Serraj, R., & Siddique, K. H. M. (2007). Abiotic stresses. In S. S. Yadav, R. Redden, W. Chen, & B. Sharma (Eds.), Chickpea breeding and management (pp. 474–496). Wallingford, UK: CAB International.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Agricultural DevelopmentDemocritus University of ThraceOrestiadaGreece

Personalised recommendations