International Journal of Plant Production

, Volume 12, Issue 3, pp 219–223 | Cite as

Modeling the Population Dynamics of a Community of Two Grass Weeds of Winter Wheat in a Mediterranean Area

  • Jose L. Gonzalez-AndujarEmail author
  • Fernando Bastida


Compared to classical, only-one weed species models, demographic projections accounting for species interactions within the weed community might represent a more realistic approximation to the outcome of weed control options in Mediterranean cereal crops. A mathematical model for simulating the dynamics of a weed community composed of populations of Lolium rigidum and Avena sterilis growing in winter wheat under a Mediterranean climate has been constructed using previous reported data on demographic rates. The model was used to simulate the population long-term dynamics and the effect of eight herbicide-based control strategies. In absence of herbicide application, our model predicts that A. sterilis seed bank increases steadily up to an equilibrium density of 2567 seeds m−2 whereas L. rigidum is driven to extinction after a period of 9 years. The most effective strategy in terms of reducing weed abundance in the long-term was the application of full dose of herbicide controlling L. rigidum and half-dose of herbicide controlling A. sterilis, which resulted in an equilibrium level of 25 seeds m−2 for L. rigidum and extinction of A. sterilis. A sensitivity analysis showed that the demographic process to which the model was more sensitive was seed rain loss in both species. Furthermore, control tactics specifically focusing on these demographic parameters should be investigated.


Seed bank Avena sterilis Lolium rigidum Herbicide Simulation Sensitivity analysis 



This work has been funded by FEDER (European Regional Development Funds) and the Spanish Ministry of Economy and Competitiveness funds (Projects AGL2015-63130-R).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Barroso, J., Alcantara, C., & Saavedra, M. M. (2011). Competition between Avena sterilis ssp. sterilis and wheat in South Western Spain. Spanish Journal of Agricultural Research, 9, 862–872.CrossRefGoogle Scholar
  2. Blanco-Moreno, J. M., Chamorro, L., & Sans, F. X. (2006). Spatial and temporal patterns of Lolium rigidumAvena sterilis mixed populations in a cereal field. Weed Research, 46, 207–218.CrossRefGoogle Scholar
  3. Cirujeda, A., Aibar, J., & Zaragoza, C. (2011). Remarkable changes of weed species in Spanish cereal fields from 1976 to 2007. Agronomy for Sustainable Development, 31, 675–688.CrossRefGoogle Scholar
  4. Evans, T. A., & Gleeson, P. V. (2016). Direct measurement of ant predation of weed seeds in wheat cropping. Journal of Applied Ecology, 53, 1177–1185.CrossRefGoogle Scholar
  5. Fernandez-Quintanilla, C., et al. (1998). Using the low rate concept for control of grass weeds in cereals under Mediterranean conditions. In: Proceedings of the sixth EWRS Mediterranean symposium, Montpellier (pp. 353–359).Google Scholar
  6. Fernandez-Quintanilla, C., Barroso, J., Recasens, J., Sans, X., Torner, C., & Sanchez del Arco, M. J. (2000). Demography of Lolium rigidum in winter barley crops: Analysis of recruitment, survival and reproduction. Weed Research, 40, 281–291.CrossRefGoogle Scholar
  7. Fernandez-Quintanilla, C., Navarrete, L., Torner, C., & Sanchez del Arco, M. J. (1997). Avena sterilis en cultivos de cereales. In X. Sans & C. Fernandez-Quintanilla (Eds.), Biologia de las Malas Hierbas de España (pp. 11–23). Valencia: Phytoma.Google Scholar
  8. Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (1991). Modeling the population dynamics of Avena sterilis under dry-land cereal cropping systems. Journal of Applied Ecology, 28, 16–27.CrossRefGoogle Scholar
  9. Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (1993). Strategies for the control of Avena sterilis in winter wheat production systems in central Spain. Crop Protection, 12, 617–623.CrossRefGoogle Scholar
  10. Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (2004). Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Protection, 23, 723–729.CrossRefGoogle Scholar
  11. Gonzalez-Andujar, J. L., Martinez-Cob, A., Lopez-Granados, F., & Garcia-Torres, L. (2001). Spatial distribution and mapping of crenate broomrape infestations in continuous broad bean cropping. Weed Science, 49, 773–779.CrossRefGoogle Scholar
  12. Gonzalez-Andujar, J. L., & Saavedra, M. (2003). Spatial distribution of annual grass weed populations in winter cereals. Crop Protection, 22, 629–633.CrossRefGoogle Scholar
  13. Gonzalez-Andujar, J. L., et al. (2010). Field evaluation of a decision support system for herbicidal control of Avena sterilis ssp. ludoviciana in winter wheat. Weed Research, 50, 83–88.CrossRefGoogle Scholar
  14. Heap, I. (2018). The international survey of herbicide resistant weeds. Accessed 17 Feb 2018.
  15. Holst, N., Rasmussen, I. A., & Bastiaans, L. (2007). Field weed population dynamics: A review of model approaches and applications. Weed Research, 47, 1–14.CrossRefGoogle Scholar
  16. Izquierdo, J., Recasens, J., Fernandez-Quintanilla, C., & Gill, G. (2003). Effects of crop and weed densities on the interactions between barley and Lolium rigidum in several Mediterranean locations. Agronomie, 23, 529–536.CrossRefGoogle Scholar
  17. Lacoste, M., & Powles, S. (2015). RIM: Anatomy of a weed management decision support system fro adaptation and wider application. Weed Science, 63, 676–689.CrossRefGoogle Scholar
  18. Monaghan, N. M. (1980). The biology and control of Lolium rigidum as a weed of wheat. Weed Research, 20, 117–121.CrossRefGoogle Scholar
  19. Oerke, E. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.CrossRefGoogle Scholar
  20. Pannell, D. J. (1997). Sensitivity analysis of normative economic models: Theoretical framework and practical strategies. Agricultural Economics, 16, 139–152.CrossRefGoogle Scholar
  21. Pannell, D. J., & Gill, G. S. (1994). Mixtures of wild oats (Avena fatua) and ryegrass (Lolium rigidum) in wheat: Competition and optimal economic control. Crop Protection, 5, 371–375.CrossRefGoogle Scholar
  22. Pannell, D. J., Stewart, V., Bennett, A., Monjardino, M., Schmidt, C., & Powles, S. B. (2004). RIM: A bioeconomic model for integrated weed management of Lolium rigidum in Western Australia. Agricultural Systems, 79, 305–325.CrossRefGoogle Scholar
  23. Perry, J. N., & Gonzalez-Andujar, J. L. (1993). A metapopulation neighbourhood model for an annual plant with a seedbank. Journal of Ecology, 81, 453–463.CrossRefGoogle Scholar
  24. Recasens, J., Taberner, A., & Izquierdo, J. (1997). Lolium rigidum Gaudin en cultivos de cereales. In X. Sans & C. Fernandez-Quintanilla (Eds.), Biologia de las Malas Hierbas de España (pp. 49–64). Valencia: Phytoma España.Google Scholar
  25. Torner, C., de Sanchez Arco, M. J., Satorre, E. H., & Fernandez-Quintanilla, C. (2000). A comparison of the growth patterns and the competitive ability of four annual weeds. Agronomie, 20, 147–156.CrossRefGoogle Scholar
  26. Torner, C., Gonzalez-Andujar, J. L., & Fernandez-Quintanilla, C. (1991). Wild oat (Avena sterilis L.) competition with winter barley: Plant density effects. Weed Research, 31, 301–307.CrossRefGoogle Scholar
  27. Torra, J., Gonzalez-Andujar, J. L., & Recasens, J. (2008). Modelling the population dynamics of Papaver rhoeas under various weed management systems in a Mediterranean climate. Weed Research, 48, 136–146.CrossRefGoogle Scholar
  28. Travlos, I. S. (2012). Reduced herbicide rates for an effective weed control in competitive wheat cultivars. International Journal of Plan Production, 6(1), 1–14.Google Scholar
  29. Vila-Aiub, M. M., & Ghersa, C. M. (2005). Building up resistance by recurrently exposing target plants to sublethal doses of herbicide. European Journal Agronomy, 22, 195–207.CrossRefGoogle Scholar
  30. Walsh, M. J., Harrington, R. B., & Powles, S. B. (2012). Harrington seed destructor: A new nonchemical weed control tool for global grain crops. Crop Science, 52, 1343–1347.CrossRefGoogle Scholar
  31. Zhang, J., Weaver, S. E., & Hamill, A. S. (2000). Risks and reliability of using herbicides at below-labeled rates. Weed Technology, 14, 106–115.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Instituto de Agricultura Sostenible (CSIC)CórdobaSpain
  2. 2.Departamento de Ciencias AgroforestalesUniversidad de Huelva, Campus La RábidaPalos de la FronteraSpain

Personalised recommendations