Advertisement

International Journal of Plant Production

, Volume 12, Issue 3, pp 203–217 | Cite as

Effect of Irrigation Method on Adaptation Capacity of Rice to Climate Change in Subtropical India

  • Yogesh Anand Rajwade
  • Dillip Kumar Swain
  • Kamlesh Narayan Tiwari
Research

Abstract

Water management technologies under projected climate change will play key role in sustainable rice production. Modeling approach was used to assess the impact of climate change on rice production under drip irrigation (DIR) and conventional puddle transplanted (PTR) in subtropical India. The genotype coefficients of CERES-Rice model (cv. Naveen) were determined and tested using experimental data for the years 2012–2014. Close match between the observed and simulated values was recorded during both the years which led to higher d-index (> 0.95) and lower normalized RMSE (RMSEn) values. Under the projected climate change scenarios (RCP 4.5 and RCP 8.5), grain yield reduced over the period 2020–2080, with higher decline in RCP 8.5. Over the period, higher nitrogen (N) use efficiency in DIR led to lower yield reduction over PTR. Among the different adaptation measures, higher fertilizer N dose was able to mitigate negative impact of temperature rise up to 3.3 °C over base period, beyond which grain yield was significantly reduced. Results of the simulations for the different sowing dates stated higher reduction in grain yield with delayed sowing in DIR as well as in PTR for both (RCP 4.5 and 8.5) climate change scenarios. However, early sowing resulted in better crop establishment in DIR leading to better yield compared to PTR in both the climate change scenarios.

Keywords

Adaptation Climate change Drip irrigation Rice yield 

Notes

Funding

Funding was provided by Ministry of Human Resources Development, Government of India.

References

  1. Ahmad, S., Ahmad, A., Ali, H., Hussain, A., Garcia y Garcia, A., Khan, M. A., et al. (2013). Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrigation Science, 31(3), 491–506.CrossRefGoogle Scholar
  2. Ahmad, S., Ahmad, A., Soler, C. M. T., Ali, H., Zia-Ul-Haq, M., Anothai, J., et al. (2012). Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precision Agriculture, 13(2), 200–218.CrossRefGoogle Scholar
  3. Boote, K. J., Jones, J. W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In G. Y. Tsuji, et al. (Eds.), Understanding options for agricultural production (pp. 99–128). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  4. Cassman, K. G., Dobermann, A., & Walters, D. T. (2002). Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO: A Journal of the Human Environment, 31(2), 132–140.CrossRefGoogle Scholar
  5. Chun-Lin, S. H. I., Zhi-Qing, J. I. N., Zheng, J. C., & Ri-Sheng, T. A. N. G. (2008). Effect of high temperature at meiosis stage on seed-setting rate in rice. Acta Agronomica Sinica, 34(4), 627–631.Google Scholar
  6. De Datta, S. K. (1981). Principles and practices of rice production. Los Baños: International Rice Research Institute.Google Scholar
  7. Dingkuhn, M., De Vries, F. P., De Datta, S. K., & Van Laar, H. H. (1991). Concepts for a new plant type for direct seeded flooded tropical rice. In Direct seeded flooded rice in the tropics. Selected papers International Rice Research Conference (IRRC), Seoul, South Korea, 1990 (pp. 17–38). Manila: IRRI.Google Scholar
  8. Evans, L. T., & De Datta, S. K. (1979). The relation between irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer application and month of planting. Field Crops Research, 2, 1–17.CrossRefGoogle Scholar
  9. Fageria, N. K., & Baligar, V. C. (2001). Lowland rice response to nitrogen fertilization. Communications in Soil Science and Plant Analysis, 32(9–10), 1405–1429.CrossRefGoogle Scholar
  10. Fageria, N. K., De Morais, O. P., & Dos Santos, A. B. (2010). Nitrogen use efficiency in upland rice genotypes. Journal of Plant Nutrition, 33(11), 1696–1711.CrossRefGoogle Scholar
  11. Fitzgerald, M. A., & Resurreccion, A. P. (2009). Maintaining the yield of edible rice in a warming world. Functional Plant Biology, 36(12), 1037–1045.CrossRefGoogle Scholar
  12. Ghose, B., Sarker, S., Kpoghomou, M. A., Gao, H., Jun, L., Yin, D., et al. (2013). Self-sufficiency in rice and food security: A South Asian perspective. Agriculture and Food Security, 2(1), 10–16.CrossRefGoogle Scholar
  13. Giorgi, F., Jones, C., & Asrar, G. R. (2009). Addressing climate information needs at the regional level: The CORDEX framework. World Meteorological Organization (WMO) Bulletin, 58(3), 175–183.Google Scholar
  14. Hoogenboom, G., Jones, J. W., Wilkens, P. W., Porter, C. H., Boote, K. J., Hunt, L. A., et al. (2015). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (http://www.DSSAT.net). Prosser, Washington: DSSAT Foundation.
  15. Hunt, L. A., & Boote, K. J. (1998). Data for model operation, calibration, and evaluation. In G. Y. Tsuji, G. Hoogenboom, & P. K. Thornton (Eds.), Understanding options for agricultural production (pp. 9–39). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  16. Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1–2), 117–161.CrossRefGoogle Scholar
  17. Jagadish, S. V. K., Craufurd, P. Q., Shi, W., & Oane, R. (2013). A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Functional Plant Biology, 41(1), 48–55.CrossRefGoogle Scholar
  18. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350.CrossRefGoogle Scholar
  19. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3), 235–265.CrossRefGoogle Scholar
  20. Julia, C., & Dingkuhn, M. (2013). Predicting temperature induced sterility of rice spikelets requires simulation of crop-generated microclimate. European Journal of Agronomy, 49, 50–60.CrossRefGoogle Scholar
  21. Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2015). Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23–32.CrossRefGoogle Scholar
  22. Kim, H. Y., Lieffering, M., Kobayashi, K., Okada, M., Mitchell, M. W., & Gumpertz, M. (2003). Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 83(3), 261–270.CrossRefGoogle Scholar
  23. Krishnan, P., Swain, D. K., Bhaskar, B. C., Nayak, S. K., & Dash, R. N. (2007). Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 122(2), 233–242.CrossRefGoogle Scholar
  24. Leeper, E. M. (2010). Monetary science, fiscal alchemy (No. w16510). National Bureau of Economic Research. In Proceedings—Economic Policy Symposium—Jackson Hole, Federal Reserve Bank of Kansas City (pp. 361–434).Google Scholar
  25. Lehmann, N., Finger, R., Klein, T., Calanca, P., & Walter, A. (2013). Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agricultural Systems, 117, 55–65.CrossRefGoogle Scholar
  26. Lieffering, M., Kim, H. Y., Kobayashi, K., & Okada, M. (2004). The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Research, 88(2), 279–286.CrossRefGoogle Scholar
  27. Lobell, D. B., Hammer, G. L., McLean, G., Messina, C., Roberts, M. J., & Schlenker, W. (2013). The critical role of extreme heat for maize production in the United States. Nature Climate Change, 3(5), 497–501.CrossRefGoogle Scholar
  28. Long, S. P., & Ort, D. R. (2010). More than taking the heat: Crops and global change. Current Opinion in Plant Biology, 13(3), 241–248.CrossRefPubMedGoogle Scholar
  29. Masutomi, Y., Takahashi, K., Harasawa, H., & Matsuoka, Y. (2009). Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agriculture, Ecosystems & Environment, 131(3), 281–291.CrossRefGoogle Scholar
  30. Maytín, C. E., Acevedo, M. F., Jaimez, R., Anderson, R., Harwell, M. A., Robock, A., et al. (1995). Potential effects of global climatic change on the phenology and yield of maize in Venezuela. Climatic Change, 29(2), 189–211.CrossRefGoogle Scholar
  31. Mishra, A., Singh, R., Raghuwanshi, N. S., Chatterjee, C., & Froebrich, J. (2013). Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Science of the Total Environment, 468, S132–S138.CrossRefPubMedGoogle Scholar
  32. Misselhorn, A., Aggarwal, P., Ericksen, P., Gregory, P., Horn-Phathanothai, L., Ingram, J., et al. (2012). A vision for attaining food security. Current Opinion in Environmental Sustainability, 4(1), 7–17.CrossRefGoogle Scholar
  33. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.CrossRefPubMedGoogle Scholar
  34. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257.CrossRefPubMedGoogle Scholar
  35. Nayak, D. C., Sarkar, D., & Velayutham, M. (2001). Soil series of West Bengal (Vol. 89). Nagpur: National Bureau of Soil Survey and Land Use Planning.Google Scholar
  36. Peng, S. B., Huang, J. L., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., et al. (2004). Rice yield decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971–9975.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Prasad, P. V. V., Boote, K. J., & Hartwell, L. A. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139(3), 237–251.CrossRefGoogle Scholar
  38. Rajwade, Y. A., Swain, D. K., Tiwari, K. N., & Bhadoria, P. B. S. (2018). Grain yield, water productivity, and soil nitrogen dynamics in drip irrigated rice under varying nitrogen rates. Agronomy Journal, 110(3), 868–878.CrossRefGoogle Scholar
  39. Rajwade, Y. A., Swain, D. K., Tiwari, K. N., Mohanty, U. C., & Goswami, P. (2015). Evaluation of field level adaptation measures under the climate change scenarios in rice based cropping system in India. Environmental Processes, 2(4), 669–687.CrossRefGoogle Scholar
  40. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1–2), 33–57.CrossRefGoogle Scholar
  41. Rosenzweig, C. E., Jones, J. W., Hatfield, J., Antle, J., Ruane, A., Boote, K., et al. (2015). Guide for Regional Integrated Assessments: Handbook of Methods and Procedures, Version 5.1. Appendix 1.Google Scholar
  42. Satapathy, S. S., Swain, D. K., & Herath, S. (2014). Field experiments and simulation to evaluate rice cultivar adaptation to elevated carbon dioxide and temperature in sub-tropical India. European Journal of Agronomy, 54, 21–33.CrossRefGoogle Scholar
  43. Swain, D. K., Bhaskar, B. C., Krishman, P., Rao, K. S., Nayak, S. K., & Dash, R. N. (2006). Variation in yield, N uptake and N use efficiency of medium and late duration rice varieties. The Journal of Agricultural Science, 144, 69–83.CrossRefGoogle Scholar
  44. Teichmann, C., Eggert, B., Elizalde, A., Haensler, A., Jacob, D., Kumar, P., et al. (2013). How does a regional climate model modify the projected climate change signal of the driving GCM: A study over different CORDEX regions using REMO. Atmosphere, 4(2), 214–236.CrossRefGoogle Scholar
  45. Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., et al. (2011). RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1–2), 77–94.CrossRefGoogle Scholar
  46. Thyagarajan, T. M., Sivasamy, R., & Budhar, M. N. (1995). Procedure for collecting plant samples at different growth stages of transplanted rice crop. In T. M. Thiyagarajan, H. F. M. ten Berge, & M. C. S. Wopereis (Eds.), Nitrogen management studies in irrigated rice (pp. 99–102). Los Baños: International Rice Research Institute.Google Scholar
  47. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: An overview. Climatic Change, 109, 5–31.CrossRefGoogle Scholar
  48. Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., et al. (2009). Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Advances in Agronomy, 102, 91–133.CrossRefGoogle Scholar
  49. Weerakoon, W. M. W., Maruyama, A., & Ohba, K. (2008). Impact of humidity on temperature-induced grain sterility in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 194(2), 135–140.CrossRefGoogle Scholar
  50. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63, 1309–1313.CrossRefGoogle Scholar
  51. Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., et al. (2009). Impact of elevated CO2 concentration on inter-sub specific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crop Research, 112(1), 7–15.CrossRefGoogle Scholar
  52. Yao, F., Xu, Y., Lin, E., Yokozawa, M., & Zhang, J. (2007). Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80(3–4), 395–409.CrossRefGoogle Scholar
  53. Yoshida, S. (1972). Physiological aspects of grain yield. Annual Review of Plant Physiology, 23(1), 437–464.CrossRefGoogle Scholar
  54. Yoshida, S. (1981). Fundamentals of rice crop science. Los Baños: International Rice Research Institute.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Agricultural and Food Engineering DepartmentIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Irrigation and Drainage Engineering DivisionICAR-Central Institute of Agricultural EngineeringBhopalIndia

Personalised recommendations