Advertisement

Comparison between direct and indirect approach to solar sail circle-to-circle orbit raising optimization

  • Andrea Caruso
  • Alessandro A. QuartaEmail author
  • Giovanni Mengali
Research Article

Abstract

This paper deals with the optimization of the transfer trajectory of a solar sail-based spacecraft between circular and coplanar heliocentric orbits. The problem is addressed using both a direct and an indirect approach, while an ideal and an optical force model are used to describe the propulsive acceleration of a flat solar sail. In the direct approach, the total flight time is partitioned into arcs of equal duration, within which the sail attitude is assumed to be constant with respect to an orbital reference frame, and a nonlinear programming solver is used to optimize the transfer trajectory. The aim of the paper is to compare the performance of the two (direct and indirect) approaches in term of optimal (minimum) flight time. In this context, the simulation results show that a direct transcription method using a small number of arcs is sufficient to obtain a good estimate of the global minimum flight time obtained through the classical calculus of variation.

Keywords

flat solar sail circle-to-circle transfer heliocentric mission analysis trajectory optimization 

References

  1. [1]
    Garwin, R. L. Solar sailing: a practical method of propulsion within the solar system. Journal of Jet Propulsion, 1958, 28(3): 188–190.CrossRefGoogle Scholar
  2. [2]
    Tsu, T. C. Interplanetary travel by solar sail. ARS Journal, 1959, 29(6): 422–427.CrossRefGoogle Scholar
  3. [3]
    Sauer, C. G. Jr. Optimum solar-sail interplanetary trajectories. In: Proceedings of the AIAA/AAS Astrodynamics Conference, 1976, DOI:  https://doi.org/10.2514/6.1976-792.
  4. [4]
    Otten, M., McInnes, C. R. Near minimum-time trajectories for solar sails. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 632–634.CrossRefGoogle Scholar
  5. [5]
    Hughes, G. W., McInnes, C. R. Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 602–604.CrossRefGoogle Scholar
  6. [6]
    Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193–207.CrossRefzbMATHGoogle Scholar
  7. [7]
    Conway, B. A. A survey of methods available for the numerical optimization of continuous dynamic systems. Journal of Optimization Theory and Applications, 2012, 152(2): 271–306.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Mengali, G., Quarta, A. A. Optimal three-dimensional interplanetary rendezvous using non-ideal solar sail. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 173–177.CrossRefGoogle Scholar
  9. [9]
    Mengali, G., Quarta, A. A. Solar sail trajectories with piecewise-constant steering laws. Aerospace Science and Technology, 2009, 13(8): 431–441.CrossRefGoogle Scholar
  10. [10]
    Dachwald, B., Mengali, G., Quarta, A. A., Macdonald, M. Parametric model and optimal control of solar sails with optical degradation. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1170–1178.CrossRefGoogle Scholar
  11. [11]
    Dachwald, B., Macdonald, M., McInnes, C. R., Mengali, G., Quarta, A. A. Impact of optical degradation on solar sail mission performance. Journal of Spacecraft and Rockets, 2007, 44(4): 740–749.CrossRefGoogle Scholar
  12. [12]
    Mengali, G., Quarta, A. A., Circi, C., Dachwald, B. Refined solar sail force model with mission application. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 512–520.CrossRefGoogle Scholar
  13. [13]
    Wright, J. L. Space Sailing. Gordon and Breach, Philadelphia, 1992, 223–233.Google Scholar
  14. [14]
    McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications. Springer, 1999, 46–51.Google Scholar
  15. [15]
    Heaton, A. F., Artusio-Glimpse, A. B. An update to the NASA reference solar sail thrust model. In: Proceedings of AIAA SPACE 2015 Conference and Exposition, 2015, DOI:  https://doi.org/10.2514/6.2015-4506.
  16. [16]
    Bryson, A. E. Jr., Ho, Y. C. Applied Optimal Control. Hemisphere Publishing Corporation, 1975, 71–89.Google Scholar
  17. [17]
    Stengel, R. F. Optimal Control and Estimation. Dover Publications, 1994, 222–254.Google Scholar
  18. [18]
    Lawden, D. F. Optimal Trajectories for Space Navigation. Butterworths, 1963, 54–60.Google Scholar
  19. [19]
    Niccolai, L., Quarta, A. A., Mengali, G. Analytical solution of the optimal steering law for non-ideal solar sail. Aerospace Science and Technology, 2017, 62: 11–18.CrossRefGoogle Scholar
  20. [20]
    Shampine, L. F., Gordon, M. K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem. W. H. Freeman, 1975.Google Scholar
  21. [21]
    Shampine, L. F., Reichelt, M. W. The MATLAB ODE suite. SIAM Journal on Scientific Computing, 1997, 18(1): 1–22.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Quarta, A. A., Mengali, G. Semi-analytical method for the analysis of solar sail heliocentric orbit raising. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 330–335.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Andrea Caruso
    • 1
  • Alessandro A. Quarta
    • 1
    Email author
  • Giovanni Mengali
    • 1
  1. 1.Department of Civil and Industrial EngineeringUniversity of PisaPisaItaly

Personalised recommendations