Advertisement

Review on solar sail technology

  • Shengping GongEmail author
  • Malcolm Macdonald
Review Article
  • 22 Downloads

Abstract

This paper reviews solar sail trajectory design and dynamics, attitude control, and structural dynamics. Within the area of orbital dynamics, methods relevant to transfer trajectory design and non-Keplerian orbit generation are discussed. Within the area of attitude control, different control strategies, including utilisation of solar radiation pressure and conventional actuators, are discussed. Finally, the methods of modelling structural dynamics during and after deployment are discussed, before considering possible future trends in developing of solar sailing missions.

Keywords

solar sail orbit attitude structure 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 117722167 and 11822205).

References

  1. [1]
    Zander’s. Problems of flight by jet propulsion: Interplanetary flights, was translated by NASA. See NASA Technical Translation F-147 (1964); specifically, Section 7: Flight Around a Planet’s Satellite for Accelerating or Decelerating Spaceship, 1925, 290–292.Google Scholar
  2. [2]
    Prince, J. L. H., Powell, R. W., Murri, D. Autonomous aerobraking: A design, development, and feasibility study. AAS 11-473, NASA Langley Research Center, 2011.Google Scholar
  3. [3]
  4. [4]
    Janhunen, P. Electric sail for spacecraft propulsion. Journal of Propulsion and Power, 2004, 20(4): 763–764.CrossRefGoogle Scholar
  5. [5]
    Zubrin, R. M., Andrews, D. G. Magnetic sails and interplanetary travel. Journal of Spacecraft and Rockets, 1991, 28(2): 197–203.CrossRefGoogle Scholar
  6. [6]
    Maxwell, J. C. A treatise on electricity and magnetism, Clarendon Press, 1873.Google Scholar
  7. [7]
    Lebedew, P. The physical causes of the deviations from Newton's law of gravitation. Astrophysical Journal, 1902, 16: 155–161.CrossRefGoogle Scholar
  8. [8]
    Nichols, E. F., Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Physics Review (Series I), 1901, 13(5): 307–320.CrossRefGoogle Scholar
  9. [9]
    Nichols, E. F., Hull, G. F. The pressure due to radiation. Astrophysical Journal, 1903, 17: 315.CrossRefGoogle Scholar
  10. [10]
    Tsiolkovsky, K. E. Extension of man into outer space. In: Proceedings of Symposium Jet Propulsion No.2, 1936.Google Scholar
  11. [11]
    Tsander, K. From a scientific heritage. NASA Technical Translation No. TTF-541, NASA, 1967.Google Scholar
  12. [12]
    Tsiolkovsky, K. E. Exploration of the universe with reaction machines. The Science Review, 1903(5).Google Scholar
  13. [13]
    Oberth, H. Die rakete zu den planetenräumen, R. Oldenbourg, 1923, 86–88.zbMATHGoogle Scholar
  14. [14]
    Oberth, H. Wege zur raumschiffahrt. R. Oldenbourg, 1929, 353–371.Google Scholar
  15. [15]
    Wiley, C. (Pseudonym: Sanders, R.), ‘Clipper ships of space’. Astounding Science Fiction, 1951, 136–143.Google Scholar
  16. [16]
    MacNeal, R. H. Comparison of the solar sail with electric propulsion systems. NASA CR-1986, National Aeronautics and Space Administration, 1972.Google Scholar
  17. [17]
    McInnes, C. R. Solar sail mission applications for non-Keplerian orbits. Acta Astronautica, 1999, 45(4–9): 567–575.CrossRefGoogle Scholar
  18. [18]
    Sohn, R. L. Attitude stabilization by means of solar radiation pressure. ARS Journal, 1959, 29(5): 371–373.Google Scholar
  19. [19]
    Renner, U. Attitude control by solar sailing-a promising experiment with OTS-2. European Space Agency Journal, 1979, 3: 35–40.Google Scholar
  20. [20]
    Modi, V. J. On the semi-passive attitude control and propulsion of space vehicles using solar radiation pressure. Acta Astronautica, 1995, 35(2–3): 231–246.CrossRefGoogle Scholar
  21. [21]
    Acord, J. D., Nicklas, J. C. Theoretical and practical aspects of solar pressure attitude control for interplanetary spacecraft. In: Proceedings of Guidance and Control Conference, 1964, 73–101.CrossRefGoogle Scholar
  22. [22]
    Shirley, D. L. The mariner 10 mission to Venus and mercury. In: Proceedings of the New Face of Space Selected Proceedings of the 53rd International Astronautical Federation Congress, 2002.Google Scholar
  23. [23]
    O’Shaughnessy, D. J., McAdams, J. V., Williams, K. E., Page, B. R. Fire sail: Messenger’s use of solar radiation pressure for accurate mercury flybys. AAS 09-014, 2009.Google Scholar
  24. [24]
    David, J. Sailing to the world’s most famous comet. Story of Lightsail-Part 1. Available at: https://doi.org/sail.planetary.org/story-part-1.html.
  25. [25]
    Znamya (satellite). Available at: https://doi.org/en.wikipedia.org/wiki/Znamya (satellite).
  26. [26]
    Alexander, A. Japanese researchers successfully test unfurling of solar sail on rocket flight. Planetary News, 2004-08-10.Google Scholar
  27. [27]
    Lovgren, S. Solar sail spacecraft set for launch. National Geographic News, 2005-06-20.Google Scholar
  28. [28]
    Leipold, M., Eiden, M., Garner, C. E., Herbeck, L., Kassing, D., Niederstadt, T., Krüger, T., Pagel, G., Rezazad, M., Rozemeijer, H. et al. Solar sail technology development and demonstration. In: Selected Proceedings of the 4th IAA International Conference on Low Cost Planetary Missions, 2003.Google Scholar
  29. [29]
    Seboldt, W., Leipold, M., Rezazad, M., Herbeck, L., Unkenbold, W., Kassing, D., Eiden, M. Ground-based demonstration of solar sail technology. In: Proceedings of the 51st International Astronautical Congress, 2000.Google Scholar
  30. [30]
    Seefeldt, P. A stowing and deployment strategy for large membrane space systems on the example of Gossamer-1. Advances in Space Research, 2017, 60(6): 1345–1362.CrossRefGoogle Scholar
  31. [31]
    Seefeldt, P., Spietz, P., Sproewitz, T., Grundmann, J. T., Hillebrandt, M., Hobbie, C., Ruffer, M., Straubel, M., Tóth, N., Zander, M. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft. Advances in Space Research, 2017, 59(1): 434–456.CrossRefGoogle Scholar
  32. [32]
    Dachwald, B., Boehnhardt, H., Broj, U., Geppert, U. R. M. E., Grundmann, J. T., Seboldt, W., Seefeldt, P., Spietz, P., Johnson, L., Kührt, E. et al. Gossamer roadmap technology reference study for a multiple NEO rendezvous mission. Advances in Solar Sailing, 2014.Google Scholar
  33. [33]
    Peloni, A., Ceriotti, M., Dachwald, B. Solar-sail trajectory design for a multiple near-earth-asteroid rendezvous mission. Journal of Guidance, Control, and Dynamics, 2016, 39(12): 2712–2724.CrossRefGoogle Scholar
  34. [34]
    West, J. L., Derbès, B. Solar sail vehicle system design for the geostorm warning mission. In: Proceedings of the AIAA Space 2000 Conference and Exposition, 2000.Google Scholar
  35. [35]
    Price, H., Ayon, J., Garner, C., Klose, G., Mettler, E., Sprague, G. Design for a solar sail demonstration mission. In: Proceedings of Space Technology and Applications International Forum, 2001.Google Scholar
  36. [36]
    Murphy, D. M., Murphey, T. W., Gierow, P. A. Scalable solar sail subsystem design considerations. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  37. [37]
    Garner, C., Diedrich, B., Leipold, M. A summary of solar sail technology developments and proposed demonstration missions. In: Proceedings of the 35th Joint Propulsion Conference and Exhibit, 1999.Google Scholar
  38. [38]
    Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C. L. NanoSail-D: The first flight demonstration of solar sails for nanosatellites. In: Proceedings of the 22nd Annual AIAA/USU Conference on Small Satellites, 2008.Google Scholar
  39. [39]
    Johnson, L., Young, R., Montgomery, E., Alhorn, D. Status of solar sail technology within NASA. In: Proceedings of the 2nd International Symposium on Solar Sailing, 2010.Google Scholar
  40. [40]
    NASA’s first solar sail NanoSail-D deploys in low-Earth orbit. NASA, Small Satellite Missions. Available at: https://doi.org/www.nasa.gov/mission_pages/smallsats/11-010.html.
  41. [41]
    Wall, M. World’s largest solar sail to launch in November 2014. Available at: https://doi.org/www.space.com/21556-sunjammer-solar-sail-launch-2014.html.
  42. [42]
    McNutt, L., Johnson, L., Clardy, D., Castillo-Rogez, J., Frick, A., Jones, L. Near-earth asteroid scout. Available at: https://doi.org/ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012882.pdf.
  43. [43]
    NEA-Scout, Gunter’s Space Page. Available at: https://doi.org/space.skyrocket.de/doc_sdat/nea-scout.htm.
  44. [44]
    Mori, O., Sawada, H., Funase, R., Morimoto, M., Endo, T., Yamamoto, T., Tsuda, Y., Kawakatsu, Y., Kawaguchi, J. IKAROS demonstration team and solar sail working group, first solar power sail demonstration by IKAROS. In: Proceedings of the 27th International Symposium on Space Technology and Science, 2009.Google Scholar
  45. [45]
    Okada, T., Kebukawa, Y., Aoki, J., Matsumoto, J., Yano, H., Iwata, T., Mori, O., Bibring, J. P., Ulamec, S., Jaumann R. et al. Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail. Planetary and Space Science, 2018, 161: 99–106.CrossRefGoogle Scholar
  46. [46]
    LightSail: A solar sailing spacecraft from the planetary society. Available at: https://doi.org/sail.planetary.org/.
  47. [47]
    DeOrbitSail (DOS) Nanosatellite mission. Available at: https://doi.org/directory.eoportal.org/web/eoportal/satellite-missions/d/deorbitsail.
  48. [48]
    Trofimov, S. P., Ovchinnikov, M. Y. Performance scalability of square solar sails. Journal of Spacecraft and Rockets, 2018, 55(1): 242–246.CrossRefGoogle Scholar
  49. [49]
    Derbes, B., Veal, G., Rogan, J., Chafer, C. Team encounter solar sails. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.Google Scholar
  50. [50]
    Johnson, L., Young, R., Montgomery, E., Alhorn, D. Status of solar sail technology within NASA. Advances in Space Research, 2011, 48(11): 1687–1694.CrossRefGoogle Scholar
  51. [51]
    Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309(5738): 1215–1219.CrossRefGoogle Scholar
  52. [52]
    Drexler, K. E. Design of a high performance solar sail system. Master Dissertation, Massachusetts Institute of Technology, Massachusetts, USA, 1977.Google Scholar
  53. [53]
    Young, R. M., Montgomery, E. E., Adams, C. L. TRL assessment of solar sail technology development following the 20-meter system ground demonstrator hardware testing. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.Google Scholar
  54. [54]
    Grundmann, J. T., Bauer, W., Biele, J., Boden, R., Ceriotti, M., Cordero, F., Dachwald, B., Dumont, E., Grimm, C. D., Herčík, D. et al. Capabilities of Gossamer-1 derived small spacecraft solar sails carrying MASCOT-derived nanolanders for in-situ surveying of NEAs. Acta Astronautica, in press, DOI:  https://doi.org/10.1016/J.ACTAASTRO.2018.03.019.
  55. [55]
    Garwin, R. Solar sailing: A practical method of propulsion within the solar system. Jet Propulsion, 1958, 28(123): 188–190.Google Scholar
  56. [56]
    Tsu, T. C. Interplanetary travel by solar sail. ARS Journal, 1959, 29(6): 422–427.CrossRefGoogle Scholar
  57. [57]
    London, H. S. Some exact solutions of the equations of motion of a solar sail with constant sail setting. Journal of the American Rocket Society, 1960, 30: 198–200.zbMATHGoogle Scholar
  58. [58]
    van der Ha, J. C., Modi, V. J. Long-term evaluation of three-dimensional heliocentric solar sail trajectories with arbitrary fixed sail setting. Celestial Mechanics, 1979, 19(2): 113–138.zbMATHCrossRefGoogle Scholar
  59. [59]
    Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishechenko, E. F. The mathematical theory of optimal processes, Wiley, 1962.Google Scholar
  60. [60]
    Macdonald, M., McInnes, C. R. Analytical control laws for planet-centered solar sailing. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 1038–1048.CrossRefGoogle Scholar
  61. [61]
    Coverstone, V. L., Prussing J. E. Technique for escape from geosynchronous transfer orbit using a solar sail. Journal of Guidance, Control, and Dynamics, 2003, 26(4): 628–634.CrossRefGoogle Scholar
  62. [62]
    Kim, M. Continuous low-thrust trajectory optimization: Techniques and applications. Master Dissertation, Virginia Polytechnic Institute and State University, Virginia, USA, 2005.Google Scholar
  63. [63]
    Gong, S. P., Gao, Y. F., Li, J. F. Solar sail time-optimal interplanetary transfer trajectory design. Research in Astronomy and Astrophysics, 2011, 11(8): 981–996.CrossRefGoogle Scholar
  64. [64]
    Garg, D., Patterson, M. A., Francolin, C., Darby, C. L., Huntington, G. T., Hager, W. W., Rao, A. V. Direct trajectory optimization and costate estimation of finite-horizon and in finite-horizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 2011, 49(2): 335–358.MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    Zhukov, A. N., Lebedev, V. N. Variational problem of transfer between heliocentric circular orbits by means of a solar sail. Cosmic Research, 1964, 2: 41–44.Google Scholar
  66. [66]
    Sauer, C. G. Jr. Optimum solar-sail interplanetary trajectories. In: Proceedings of Astrodynamics Conference, 1976.Google Scholar
  67. [67]
    Sauer, C. G. Jr. A comparison of solar sail and ion drive trajectories for a Halley’s comet rendezvous mission. AAS Paper 77-104, 1977.Google Scholar
  68. [68]
    Colasurdo, G., Casalino, L. Optimal control law for interplanetary trajectories with nonideal solar sail. Journal of Spacecraft and Rockets, 2003, 40(2): 260–265.CrossRefGoogle Scholar
  69. [69]
    SubbaRao, P. V., Ramanan, R. V. Optimal threedimensional heliocentric solar-sail rendezvous transfer trajectories. Acta Astronautica, 1993, 29(5): 341–345.CrossRefGoogle Scholar
  70. [70]
    Quarta, A. A., Mengal, G. Solar sail missions to mercury with Venus gravity assist. Acta Astronautica, 2009, 65(3–4): 495–506.CrossRefGoogle Scholar
  71. [71]
    Otten, M., McInnes, C. R. Near minimum-time trajectories for solar sails. Journal of Guidance, Control, and Dynamics, 2001, 24(3): 632–634.CrossRefGoogle Scholar
  72. [72]
    Mengali, G., Quarta, A. A. Solar sail trajectories with piecewise-constant steering laws. Aerospace Science and Technology, 2009, 13(8): 431–441.CrossRefGoogle Scholar
  73. [73]
    Macdonald, M., McInnes, C. R., Dachwald, B. Heliocentric solar sail orbit transfers with locally optimal control laws. Journal of Spacecraft and Rockets, 2007, 44(1): 273–276.CrossRefGoogle Scholar
  74. [74]
    Hokamoto, S., Sachimoto, K., Fujita, K. Trajectory design of solar sail spacecraft for interplanetary rendezvous missions. Transactions of Space Technology Japan, 2009, 7(26): 37–42.Google Scholar
  75. [75]
    NASA Office of Space Science. Sun-earth connection roadmap: Strategic planning for the years 2000–2020. NASA, 1997.Google Scholar
  76. [76]
    Macdonald, M., Hughes, G. W., McInnes, C. R., Lyngvi, A., Falkner, P., Atzei, A. Solar polar orbiter: A solar sail technology reference study. Journal of Spacecraft and Rockets, 2006, 43(5): 960–972.CrossRefGoogle Scholar
  77. [77]
    Goldstein, B. E., Buffington, A., Cummings, A. C., Fisher, R. R., Jackson, B. V., Liewer, P. C., Mewaldt, R. A., Neugebauer, M. Solar polar sail mission: Report of a study to put a scientific spacecraft in a circular polar orbit about the Sun. In: Proceedings of the SPIE 3442, International Symposium on Optical Science, Engineering, and Instrumentation, 1998.Google Scholar
  78. [78]
    Sauer, C. G. Jr. Solar sail trajectories for solar-polar and interstellar probe missions. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, 1999.Google Scholar
  79. [79]
    Dachwald, B., Ohndorf, A., Wie, B. Solar sail trajectory optimization for the Solar Polar Imager (SPI) Mission. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2006.Google Scholar
  80. [80]
    Mengali, G., Quarta, A. A. Solar sail near-optimal circular transfers with plane change. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 456–463.CrossRefGoogle Scholar
  81. [81]
    Macdonald, M. Analytical, circle-to-circle low-thrust transfer trajectories with plane change. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.Google Scholar
  82. [82]
    Driver, J. M. Analysis of an arctic polesitter. Journal of Spacecraft and Rockets, 1980, 17(3): 263–269.CrossRefGoogle Scholar
  83. [83]
    McInnes, C. R., Simmons, J. F. L. Solar sail halo orbits part II-geocentric case. Journal of Spacecraft and Rockets, 1992, 29(4): 472–479.CrossRefGoogle Scholar
  84. [84]
    Hughes, G. W., McInnes, C. R. Solar sail hybrid trajectory optimization for non-Keplerian orbit transfers. Journal of Guidance, Control, and Dynamics, 2002, 25(3): 602–604.CrossRefGoogle Scholar
  85. [85]
    Ceriotti, M., Heiligers, J., McInnes. C. R. Trajectory and spacecraft design for a pole-sitter mission. Journal of Spacecraft and Rockets, 2014, 51(1): 311–326.CrossRefGoogle Scholar
  86. [86]
    Heiligers, J., Ceriotti, M., McInnes. C. R., Biggs, J. D. Mission analysis and systems design of a near-term and far-term pole-sitter mission. Acta Astronautica, 2014, 94(1): 455–469.CrossRefGoogle Scholar
  87. [87]
    West, J. The Geostorm Warning Mission: enhanced opportunities based on new technology. In: Proceedings of the 14th AAS/AIAA Space Flight Mechanics Conference, 2004.Google Scholar
  88. [88]
    McInnes, C. Solar sailing: Technology, dynamics and mission applications, Springer, 1999.CrossRefGoogle Scholar
  89. [89]
    Lisano, M., Lawrence, D., Piggott, S. Solar sail transfer trajectory design and stationkeeping control for missions to the Sub-L1 equilibrium region. In: Proceedings of the 15th AAS/AIAA Spaceflight Mechanics Conference, 2005.Google Scholar
  90. [90]
    Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos, 2000, 10(2): 427–469.MathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    Biggs, J. D., Waters, T., McInnes, C. New periodic orbits in the solar sail three-body problem. Nonlinear Science and Complexity, 2011.Google Scholar
  92. [92]
    Gong, S. P., Baoyin, H. X., Li, J. F. Solar sail three-body transfer trajectory design. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 873–886.CrossRefGoogle Scholar
  93. [93]
    Gong, S. P., Li, J. F., Baoyin, H. X. Solar sail transfer trajectory from L1 point to sub-L1 point. Aerospace Science and Technology, 2011, 15(7): 544–554.CrossRefGoogle Scholar
  94. [94]
    Wallace, R. A. Precursor missions to interstellar exploration. In: Proceedings of the 1999 IEEE Aerospace Conference, 1999.Google Scholar
  95. [95]
    Johnson, L., Leifer, S. Propulsion options for interstellar exploration. In: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.Google Scholar
  96. [96]
    Wallace, R. A., Ayon, J. A., Sprague, G. A. Interstellar probe mission/system concept. In: Proceedings of 2000 IEEE Aerospace Conference, 2000.Google Scholar
  97. [97]
    Nieto, M. M., Turyshev, S. G. Measuring the interplanetary medium with a solar sail. International Journal of Modern Physics D, 2004, 13(5): 899–906.CrossRefGoogle Scholar
  98. [98]
    Garner, C. E., Layman, W., Gavit, S. A., Knowles, T. A solar sail design for a mission to the near-interstellar medium. AIP Conference Proceedings, 2000, 504: 947–961.CrossRefGoogle Scholar
  99. [99]
    Dachwald, B. Optimal solar-sail trajectories for missions to the outer solar system. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1187–1193.CrossRefGoogle Scholar
  100. [100]
    Lyngvi, A., Falkner, P., Peacock, A. The interstellar heliopause probe, Tools and Technologies for Future Planetary Exploration. In: Proceedings of the 37th ESLAB Symposium, 2004.Google Scholar
  101. [101]
    Lyngvi, A., Falkner, P., Kemble, S., Leipold, M., Peacock, A. The interstellar heliopause probe. Acta Astronautica, 2005, 57(2–8): 104–111.CrossRefGoogle Scholar
  102. [102]
    Lyngvi, A., Falkner, P., Peacock, A. The interstellar heliopause probe technology reference study. Advances in Space Research, 2005, 35(12): 2073–2077.CrossRefGoogle Scholar
  103. [103]
    Leipold, M., Fichtner, H., Heber, B., Groepper, P., Lascar, S., Burger, F., Eiden, M., Niederstadt, T., Sickinger, C., Herbeck, L. et al. Heliopause explorer—a sailcraft mission to the outer boundaries of the solar system. Acta Astronautica, 2006, 59(8–11): 785–796.CrossRefGoogle Scholar
  104. [104]
    Macdonald, M., McInnes, C., Hughes, G. Technology requirements of exploration beyond Neptune by solar sail propulsion. Journal of Spacecraft and Rockets, 2010, 47(3): 472–483.CrossRefGoogle Scholar
  105. [105]
    Sharma, D. N., Scheeres, D. J. Solar system escape trajectories using solar sails. Journal of Spacecraft and Rockets, 2004, 41(4): 684–687.CrossRefGoogle Scholar
  106. [106]
    Dachwald, B., Seboldt, W., Macdonald, M., Mengali, G., Quarta, A. A., McInnes, C. R., Rios-Reyes, L., Scheeres, D. J., Wie, B., Görlich, M. et al. Potential solar sail degradation effects on trajectory and attitude control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.Google Scholar
  107. [107]
    Sznajder, M., Geppert, U., Dudek, M. Degradation of metallic surfaces under space conditions, with particular emphasis on Hydrogen recombination processes. Advances in Space Research, 2015, 56(1): 71–84.CrossRefGoogle Scholar
  108. [108]
    He, J., Gong, S. P., Jiang, F. H., Li, J. F. Time-optimal rendezvous transfer trajectory for restricted cone-angle range solar sails. Acta Mechanica Sinica, 2014, 30(5): 628–635.MathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    McKay, R. J., Macdonald, M., Biggs, J., McInnes, C. Survey of highly non-Keplerian orbits with low-thrust propulsion. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 645–666.CrossRefGoogle Scholar
  110. [110]
    Leipold, M., Borg, E., Lingner, S., Pabsch, A., Sachs, R., Seboldt, W. Mercury orbiter with a solar sail spacecraft. Acta Astronautica, 1995, 35(S1): 635–644.CrossRefGoogle Scholar
  111. [111]
    McInnes, C. R., Macdonald, M., Angelopolous, V., Alexander, D. GEOSAIL: Exploring the geomagnetic tail using a small solar sail. Journal of Spacecraft and Rockets, 2001, 38(4): 622–629.CrossRefGoogle Scholar
  112. [112]
    Macdonald, M., Hughes, G. W., McInnes, C., Lyngvi, A., Falkner, P., Atzei, A. GeoSail: An elegant solar sail demonstration mission. Journal of Spacecraft and Rockets, 2007, 44(4): 784–796.CrossRefGoogle Scholar
  113. [113]
    Gong, S. P., Li, J. F., Baoyin, H. X., Simo, J. A new solar sail orbit. Science China Technological Sciences, 2012, 55(3): 848–855.CrossRefGoogle Scholar
  114. [114]
    Tresaco, E., Elipe, A., Carvalho, J. P. S. Frozen orbits for a solar sail around Mercury. Journal of Guidance, Control, and Dynamics, 2016, 39(7): 1659–1666.CrossRefGoogle Scholar
  115. [115]
    Baoyin, H. X., McInnes, C. R. Solar sail equilibria in the elliptical restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 538–543.CrossRefGoogle Scholar
  116. [116]
    Funase, R., Shirasawa, Y., Mimasu, Y., Mori, O., Tsuda, Y., Saiki, T., Kawaguchi, J. On-orbit verification of fuel-free attitude control system for spinning solar sail utilizing solar radiation pressure. Advances in Space Research, 2011, 48(11): 1740–1746.CrossRefGoogle Scholar
  117. [117]
    Gong, S. P., Li, J. F. Solar sail halo orbit control using reflectivity control devices. Transactions of the Japan Society for Aeronautical and Space Sciences, 2014, 57(5): 279–288.CrossRefGoogle Scholar
  118. [118]
    Mu, J. S., Gong, S. P., Li, J. F. Reflectivity-controlled solar sail formation flying for magnetosphere mission. Aerospace Science and Technology, 2013, 30(1): 339–348.CrossRefGoogle Scholar
  119. [119]
    Mu, J. S., Gong, S. P., Li, J. F. Coupled control of reflectivity modulated solar sail for GeoSail formation flying. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 740–751.CrossRefGoogle Scholar
  120. [120]
    Gong, S. P., Li, J. F. Solar sail heliocentric elliptic displaced orbits. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 2021–2026.CrossRefGoogle Scholar
  121. [121]
    Aliasi, G., Mengali, G., Quarta, A. A. Artificial Lagrange points for solar sail with electrochromic material panels. Journal of Guidance, Control, and Dynamics, 2013, 36(5): 1544–1550.CrossRefGoogle Scholar
  122. [122]
    Gong, S. P., Li, J. F. Equilibria near asteroids for solar sails with refl ection control devices. Astrophysics and Space Science, 2015, 355(2): 213–223.CrossRefGoogle Scholar
  123. [123]
    Baoyin, H. X., Mcinnes, C. R. Solar sail halo orbits at the Sun-Earth artificial L1 point. Celestial Mechanics and Dynamical Astronomy, 2006, 94(2): 155–171.MathSciNetzbMATHCrossRefGoogle Scholar
  124. [124]
    Biggs, J. D., McInnes, C. R., Waters, T. Control of solar sail periodic orbits in the elliptic three-body problem. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 318–320.zbMATHCrossRefGoogle Scholar
  125. [125]
    Gong, S. P., Li, J. F. Solar sail periodic orbits in the elliptic restricted three-body problem. Celestial Mechanics and Dynamical Astronomy, 2015, 121(2): 121–137.MathSciNetzbMATHCrossRefGoogle Scholar
  126. [126]
    Vulpetti, G. Missions to the heliopause and beyond by staged propulsion spacecrafts. In: Proceedings of the 43rd World Space Congress, 1992.Google Scholar
  127. [127]
    Vulpetti, G. 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronautica, 1996, 39(1–4): 161–170.CrossRefGoogle Scholar
  128. [128]
    Vulpetti, G. Sailcraft at high speed by orbital angular momentum reversal. Acta Astronautica, 1997, 40(10): 733–758.CrossRefGoogle Scholar
  129. [129]
    Sauer, C. Solar sail trajectories for solar polar and interstellar probe missions. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, 1999.Google Scholar
  130. [130]
    Zeng, X. Y., Baoyin, H. X., Li, J. F., Gong, S. P. Feasibility analysis of the angular momentum reversal trajectory via hodograph method for high performance solar sails. Science China Technological Sciences, 2011, 54(11): 2951–2957.CrossRefGoogle Scholar
  131. [131]
    Mengali, G., Quarta, A. A., Romagnoli, D., Circi, C. H2-reversal trajectory: A new mission application for high-performance solar sails. Advances in Space Research, 2011, 48(11): 1763–1777.CrossRefGoogle Scholar
  132. [132]
    Zeng, X. Y., Baoyin, H. X., Li, J. F., Gong, S. P. New applications of the H-reversal trajectory using solar sails. Research in Astronomy and Astrophysics, 2011, 11(7): 863–878.CrossRefGoogle Scholar
  133. [133]
    Gong, S. P., Li, J. F., Zeng, X. Y. Utilization of an H-reversal trajectory of a solar sail for asteroid deflection. Research in Astronomy and Astrophysics, 2011, 11(10): 1123–1133.CrossRefGoogle Scholar
  134. [134]
    Šuvakov, M., Dmitrašinović, V. Three classes of Newtonian three-body planar periodic orbits. Physical Review Letters, 2013, 110(11): 114301.CrossRefGoogle Scholar
  135. [135]
    Hamilton, D. P. Fresh solutions to the four-body problem. Nature, 2016, 533(7602): 187–188.CrossRefGoogle Scholar
  136. [136]
    Wie, B. Solar sail attitude control and dynamics, Part 1. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 526–535.MathSciNetCrossRefGoogle Scholar
  137. [137]
    Wie, B. Solar sail attitude control and dynamics, Part 2. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 536–544.MathSciNetCrossRefGoogle Scholar
  138. [138]
    Steyn, W. H. Attitude control actuators, sensors and algorithms for a solar sail Cubesat. In: Proceedings of the 62nd International Astronautical Congress, 2011.Google Scholar
  139. [139]
    Jordaan, H. W., Steyn, W. H. The attitude control of a tri-spin solar sail satellite. Advances in Solar Sailing, 2014, 755–769.CrossRefGoogle Scholar
  140. [140]
    Polites, M., Kalmanson, J., Mangus, D. Solar sail attitude control using small reaction wheels and magnetic torquers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(1): 53–62.CrossRefGoogle Scholar
  141. [141]
    Wie, B., Murphy, D., Paluszek, M., Thomas, S. Robust attitude control systems design for solar sails, Part 2: MicroPPT-based secondary ACS. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004.Google Scholar
  142. [142]
    Lawrence, D. A., Piggott, S. W. Integrated trajectory and attitude control for a four-vane solar sail. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.Google Scholar
  143. [143]
    Mettler, E., Açıkme, A. B., Ploen, S. R. Attitude dynamics and control of solar sails with articulated vanes. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.Google Scholar
  144. [144]
    Fu, B., Eke, F. O. An attitude control methodology for large solar sails. In: Proceedings of the AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.Google Scholar
  145. [145]
    Fu, B., Eke, F. O. A reorientation scheme for large solar sails. Advances in the Astronautical Sciences, 2014, 150: 623–638.Google Scholar
  146. [146]
    Funase, R., Kanno, G., Tsuda, Y. Controllability of propellant-free attitude control system for spinning solar sail using thin-film reflectivity control devices considering arbitrary sail deformation. In: Proceedings of the 63rd International Astronautical Congress, 2012 Google Scholar
  147. [147]
    Funase, R., Kanno, G., Tsuda, Y. Modeling and on-orbit performance evaluation of propellant-free attitude control system for spinning solar sail via optical parameter switching. In: Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, 2012, 1737–1754.Google Scholar
  148. [148]
    Guerrant, D. V., Wilkie, W. K., Lawrence, D. A. Heliogyro blade twist control via reflectivity modulation. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012.Google Scholar
  149. [149]
    Borggräfe, A., Heiligers, J., Ceriotti, M., McInnes, C.R. Optical control of solar sails using distributed reflectivity. In: Proceedings of the Spacecraft Structures Conference, 2014.Google Scholar
  150. [150]
    Benjamin, L. D. Attitude control and dynamics of solar sails. Master Dissertation, University of Washington, Washington, USA, 2001.Google Scholar
  151. [151]
    Wie, B., Thomas, S., Paluszek, M., Murphy, D. Propellantless AOCS design for a 160-m, 450-kg sailcraft of the Solar Polar Imager Mission. In: Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.Google Scholar
  152. [152]
    Wie, B., Murphy, D. Solar-sail attitude control design for a sail fl ight validation mission. Journal of Spacecraft and Rockets, 2007, 44(4): 809–821.CrossRefGoogle Scholar
  153. [153]
    Bolle, A., Circi, C. Solar sail attitude control through in-plane moving masses. Journal of Aerospace Engineering, 2008, 222(1): 81–94.Google Scholar
  154. [154]
    Scholz, C., Romagnoli, D., Dachwald, B. Performance analysis of an attitude control system for solar sails using sliding masses. In: Proceedings of the Second International Symposium on Solar Sailing, 2010.Google Scholar
  155. [155]
    Romagnoli, D., Oehlschlagel, T. High performance two degrees of freedom attitude control for solar sails. Advances in Space Research, 2011, 48(11): 1869–1879.CrossRefGoogle Scholar
  156. [156]
    Seboldt, W., Dachwald, B. Solar sails for nearterm advanced scientific deep space missions. In: Proceedings of the 8th International Workshop on Combustion and Propulsion, 2002.Google Scholar
  157. [157]
    Fu, B., Sperber, E., Eke, F. Solar sail technology—A state of the art review. Progress in Aerospace Sciences, 2016, 86: 1–19.CrossRefGoogle Scholar
  158. [158]
    Nasir, N. S., Theodorou, T., Lappas, V. J. Ground demonstration of a solar sail attitude control actuator. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2010.Google Scholar
  159. [159]
    Adeli, S. N., Lappas, V. J., Wie, B. A scalable bus-based attitude control system for Solar Sails. Advances in Space Research, 2011, 48(11): 1836–1847.CrossRefGoogle Scholar
  160. [160]
    Steyn, W. H., Lappas, V. Cubesat solar sail 3-axis stabilization using panel translation and magnetic torquing. Aerospace Science and Technology, 2011, 15(6): 476–485.CrossRefGoogle Scholar
  161. [161]
    Acord, J. D., Nicklas, J. C. Theoretical and practical aspects of solar pressure attitude control for interplanetary spacecraft. Guidance and Control, 1964, 73–91.CrossRefGoogle Scholar
  162. [162]
    Polyakhova, E. Space flight using a solar sail—the problems and the prospects. Kosmicheskiy Polet Solnechnym Parusom, Moscow, 1986.Google Scholar
  163. [163]
    Kirpichnikov, S. N., Kirpichnikova, E. S., Polyakhova, E. N., Shmyrov, A. S. Planar heliocentric rototranslatory motion of a spacecraft with a solar sail of complex shape. Celestial Mechanics and Dynamical Astronomy, 1995, 63(3–4): 255–269.zbMATHGoogle Scholar
  164. [164]
    van de Kolk, C. B., Flandro, G. A. Solar sail passive attitude stability and control. AIP Conference Proceedings, 2001, 552: 373–378.CrossRefGoogle Scholar
  165. [165]
    Atchison, J. A., Peck, M. A. A passive, sun-pointing, millimeter-scale solar sail. Acta Astronautica, 2010, 67(1–2): 108–121.CrossRefGoogle Scholar
  166. [166]
    McInnes, C. R. Passive control of displaced solar sail orbits. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 975–982.CrossRefGoogle Scholar
  167. [167]
    Gong, S. P., Li, J. F., Baoyin, H. X. Passive stability design for solar sail on displaced orbits. Journal of Spacecraft and Rockets, 2007, 44(5): 1071–1080.CrossRefGoogle Scholar
  168. [168]
    Gong, S. P., Li, J. F., Zhu, K. J. Dynamical analysis of a spinning solar sail. Advances in Space Research, 2011, 48(11): 1797–1809.CrossRefGoogle Scholar
  169. [169]
    Gong, S. P., Li J. F. Spin-stabilized solar sail for displaced solar orbits. Aerospace Science and Technology, 2014, 32(1): 188–199.CrossRefGoogle Scholar
  170. [170]
    Kreissl, S., Sakamoto, H., Park, K. C., Baier, H. Design improvements of a solar sail for stiffness increase and passive attitude stabilization. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.Google Scholar
  171. [171]
    Hu, X. S., Gong, S. P., Li, J. F. Attitude stability criteria of axisymmetric solar sail. Advances in Space Research, 2014, 54(1): 72–81.CrossRefGoogle Scholar
  172. [172]
    Gong, S. P., Li, J. F. A new inclination cranking method for a exible spinning solar sail. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 2680–2696.CrossRefGoogle Scholar
  173. [173]
    Choi, M. Flexible dynamics and attitude control of a square solar sail. Ph.D. Dissertation, University of Toronto, Toronto, Canada, 2015.Google Scholar
  174. [174]
    Wilkie, W. K., Warren, J. E., Horta, L. G., Lyle, K. H., Juang, J. N., Gibbs, S. C., Dowell, E. H., Guerrant, D. V., Lawrence, D. A. Recent advances in heliogyro solar sail structural dynamics, stability, and control research. In: Proceedings of the 2nd AIAA Spacecraft Structures Conference, 2015.Google Scholar
  175. [175]
    Fedor, J. V. Analytical theory of the stretch Yo-Yo for de-spin of satellites. NASA TN D-1676, National Aeronautics and Space Administration, 1963.Google Scholar
  176. [176]
    Collins, R. L. A three-dimensional analysis of a tangential Yo-Yo despin device on a rotating body. NASA TN D-3848, National Aeronautics and Space Administration, 1967.Google Scholar
  177. [177]
    Gärdsback, M. Deployment control of spinning space webs and membranes. SE-100 44, Royal Institute of Technology, 2008.Google Scholar
  178. [178]
    Gärdsback, M., Tibert, G. Deployment control of spinning space Webs. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 40–50.CrossRefGoogle Scholar
  179. [179]
    Gärdsback, M., Tibert, G. Optimal deployment control of spinning space webs and membranes. Journal of Guidance, Control, and Dynamics, 2009, 32(5): 1519–1530.CrossRefGoogle Scholar
  180. [180]
    Haraguchi, D., Sakamoto, H., Shirasawa, Y., Mori, O. Design criteria for spin deployment of gossamer structures considering nutation dynamics. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference, 2010.Google Scholar
  181. [181]
    Wei, Y. H., Zhu, M., Peng, C., Wang, Y. Dynamical analysis of the deployment for a reduced spinning solar sail model. Advances in Solar Sailing, 2014.Google Scholar
  182. [182]
    Nakano, T., Mori, O., Kawaguchi, J. Stability of spinning solar sail-craft containing a huge membrane. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005.Google Scholar
  183. [183]
    Funase, R., Sugita, M., Mori, O., Tsuda, Y., Kawaguchi, J. Modeling of spinning solar sail by multi particle model and its application to attitude control system. In: Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, 983–994.Google Scholar
  184. [184]
    Funase, R., Sugita, M., Miwa, Y., Mori, O., Kawaguchi, J. Oscillation-free attitude control of spinning solar sail with huge membrane. In: Proceedings of the 27th International Symposium on Space Technology and Science, 2009 Google Scholar
  185. [185]
    Okuizumi, N. Deformations and vibrations of a rotating circular membrane under distributed loads. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2007.Google Scholar
  186. [186]
    Okuizumi, N. Equilibrium of a rotating circular membrane under transverse distributed load. Journal of System Design and Dynamics, 2007, 1(1): 85–96.CrossRefGoogle Scholar
  187. [187]
    Okuizumi, N. Vibration mode analysis of a rotating circular membrane under transverse distributed load. Journal of System Design and Dynamics, 2009, 3(1): 95–106.CrossRefGoogle Scholar
  188. [188]
    Cerda, E., Mahadevan, L. Geometry and physics of wrinkling. Physical Review Letters, 2003, 90(7): 074302.CrossRefGoogle Scholar
  189. [189]
    Mori, O., Shirasawa, Y., Tsuda, Y., et al. Dynamic deployment and attitude control motion of spinning solar sail “IKAROS”. In: Proceedings of the 62nd International Astranautical Congress, 2011 Google Scholar
  190. [190]
    Sugita, M., Funase, R., Tsuda, Y., et al. Attitude control of spinning solar sail considering the deformation by solar radiation pressure. In: Proceedings of the 59th International Astranautical Congress, 2008.Google Scholar
  191. [191]
    Baddour, N. A modelling and vibration analysis of spinning disks. Ph.D. Dissertation, University of Toronto, Toronto, Canada, 2001.Google Scholar
  192. [192]
    Zhang, W., Yang, X. L. Transverse nonlinear vibrations of a circular spinning disk with a varying rotating speed. Science China Physics, Mechanics and Astronomy, 2010, 53(8): 1536–1553.CrossRefGoogle Scholar
  193. [193]
    Tsuda, Y., Saiki, T., Funase, R., Mimasu, Y. Generalized attitude model for spinning solar sail spacecraft. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 967–974.CrossRefGoogle Scholar
  194. [194]
    Tsuda, Y., Saiki, T., Funase, R., Shirasawa, Y., Mimasu, Y. Shape parameters estimation of IKAROS solar sail using in-flight attitude determination data. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.Google Scholar
  195. [195]
    Tsuda, Y., Okano, Y., Mimasu, Y., Funase, R. Onorbit sail quality evaluation utilizing attitude dynamics of spinner solar sailer ikaros, Spaceflight Mechanics, 2012, 143: 1609–1625.Google Scholar
  196. [196]
    Tsuda, Y., Mimasu, Y., Funase, R., Okano, Y. Design criteria of spinning solar sail surface based on attitude dynamics. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2012.Google Scholar
  197. [197]
    Smith, S. W., Song, H. P., Baker, J. R., Black, J., Muheim, D. M. Flexible models for solar sail control. In: Proceedings of the 46th AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.Google Scholar
  198. [198]
    Fu, B., Farouki, R. T., Fidelis, O., Eke, O. Equilibrium configuration of a bounded inextensible membrane subject to solar radiation pressure. Aerospace Science and Technology, 2017, 68: 552–560.CrossRefGoogle Scholar
  199. [199]
    Mansfield, E. H., Pugsley, A. G. Load Transfer via a wrinkled membrane. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1970, 316(1525): 269–289.CrossRefGoogle Scholar
  200. [200]
    Miller, R. K., Hedgepeth, J. M., Weingarten, V. I., Das, P., Kahyai, S. Finite element analysis of partly wrinkled membranes. Computers & Structures, 1985, 20(1–3): 631–639.CrossRefGoogle Scholar
  201. [201]
    Liu, X. X., Jenkins, C. H., Schur, W. W. Large deflection analysis of pneumatic envelopes using a penalty parameter modified material model. Finite Elements in Analysis and Design, 2001, 37(3): 233–251.zbMATHCrossRefGoogle Scholar
  202. [202]
    Moriya, K., Uemura, M. An analysis of the tension field after wrinkling in at membrane structures. In: Proceedingsof the IASS Pacific Symposium, 1971.Google Scholar
  203. [203]
    Fujikake, M., Kojima, O., Fukushima, S. Analysis of fabric tension structures. Computers & Structures, 1989, 32(3–4): 537–547.zbMATHGoogle Scholar
  204. [204]
    Miyazaki, Y., Nakamura, Y. Dynamic analysis of deployable cable-membrane structures with slackening members. In: Proceedings of the 21st International Symposium on Space Technology and Science, 1998.Google Scholar
  205. [205]
    Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D. The wrinkling of thin membranes: Part I—theory. Journal of Applied Mechanics, 1987, 54(4): 884–887.zbMATHCrossRefGoogle Scholar
  206. [206]
    Roddeman, D. G., Drukker, J., Oomens, C. W. J., Janssen, J. D. The wrinkling of thin membranes: Part II—numerical analysis. Journal of Applied Mechanics, 1987, 54(4): 888–892.zbMATHCrossRefGoogle Scholar
  207. [207]
    Miyazaki, Y., Uchiki, M. Deployment dynamics of inflatable tube. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  208. [208]
    Sleight, D. W., Muheim, D. M. Parametric studies of square solar sails using finite element analysis. In: Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.Google Scholar
  209. [209]
    Sleight, D. W., Michii, Y., Lichodziejewski, D., Derbès, B., Mann, T., O. Structural analysis of an inflation-deployed solar sail with experimental validation. In: Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005.Google Scholar
  210. [210]
    Miyamura, T. Wrinkling on stretched circular membrane under in-plane torsion: Bifurcation analyses and experiments. Engineering Structures, 2000, 22(11): 1407–1425.CrossRefGoogle Scholar
  211. [211]
    Wong, Y. W. Analysis of wrinkle patterns in prestressed membrane structures. Master Dissertation, University of Cambridge, Cambridge, UK, 2000.Google Scholar
  212. [212]
    Papa, A., Pellegrino, S. Systematically creased thin-film membrane structures. Journal of Spacecraft and Rockets, 2008, 45(1): 10–18.CrossRefGoogle Scholar
  213. [213]
    Pipkin, A. C. Relaxed energy densities for large deformations of membranes. IMA Journal of Applied Mathematics, 1994, 52(3): 297–308.MathSciNetzbMATHCrossRefGoogle Scholar
  214. [214]
    Wong, Y., W., Pellegrino, S. Computation of wrinkle amplitudes in thin membranes. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  215. [215]
    Ding, H., Yang, B., Lou, M., Fang, H. A two-viable parameter membrane model for wrinkling analysis of membrane structures. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  216. [216]
    Ding, H. L., Yang, B. G., Lou, M., Fang, H. F. New numerical method for two-dimensional partially wrinkled membranes. AIAA Journal, 2003, 41(1): 125–132.CrossRefGoogle Scholar
  217. [217]
    Murphy, D. M., Murphey, T. W., Gierow, P. A. Scalable solar sail subsystem design considerations. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  218. [218]
    Taleghani, B. K., Sleight, D. W., Muheim, D. M., Belvin, B., Wang, J. T. Assessment of analysis approaches for solar sail structural response. In: Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.Google Scholar
  219. [219]
    Holland, D. B. Static and dynamic characteristics of end-loaded beams with specific application in square solar sails. Ph.D. Dissertation, Duke University, Durham, UK, 2006.Google Scholar
  220. [220]
    Lee, K., Lee, S. W. Analysis of gossamer space structures using assumed strain formulation solid shell elements. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002.Google Scholar
  221. [221]
    Miyazaki, Y. Wrinkle/slack model and finite element dynamics of membrane. International Journal for Numerical Methods in Engineering, 2006, 66(7): 1179–1209.zbMATHCrossRefGoogle Scholar
  222. [222]
    Liu, C., Tian, Q., Yan, D., Hu, H. Y. Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 81–95.MathSciNetzbMATHCrossRefGoogle Scholar
  223. [223]
    Miyazaki, Y., Kodama, T. Formulation and interpretation of the equation of motion on the basis of the energy-momentum method. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2004, 218(1): 1–7.Google Scholar
  224. [224]
    Liao, L. A study of inertia relief analysis. In: Proceedings of the 2nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.Google Scholar
  225. [225]
    Boni, L., Mengali, G., Quarta, A. A. Solar sail structural analysis via improved finite element modeling. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(2): 306–318.CrossRefGoogle Scholar
  226. [226]
    Potes, F. C. General conceptual design problems of a parabolic solar sail structure. Universidade da Beira Interior, 2012.Google Scholar
  227. [227]
    Choi, M., Damaren, C. J. Structural dynamics and attitude control of a solar sail using tip vanes. Journal of Spacecraft and Rockets, 2015, 52(6): 1665–1679.CrossRefGoogle Scholar
  228. [228]
    Yamazaki, M., Miyazaki, Y. Low-order model of spin type solar sail dynamics by empirical model reduction. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.Google Scholar
  229. [229]
    Yamazaki, M., Miyazaki, Y. Error estimation of low-order model for gossamer multi-body structure. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference, 2011.Google Scholar
  230. [230]
    Chen, S. H., Pan, H. H. Guyan reduction. International Journal for Numerical Methods in Biomedical Engineering, 1988, 4(4): 549–556.MathSciNetzbMATHGoogle Scholar
  231. [231]
    Li, Q., Ma, X. R., Wang, T. S. Reduced model for flexible solar sail dynamics. Journal of Spacecraft and Rockets, 2011, 48(3): 446–453.CrossRefGoogle Scholar
  232. [232]
    Miyazaki, Y., Iwai, Y. Dynamics model of solar sail membrane. In: Proceedings of the 14th Workshop on Astrodynamics and Flight Mechanics, 2004.Google Scholar
  233. [233]
    Okuizumi, N. Numerical simulations of centrifugal deployments of membranes by spring-mass system models. In: Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010.Google Scholar
  234. [234]
    Okuizumi, N., Yamamoto, T. Centrifugal deployment of membrane with spiral folding: Experiment and simulation. Journal of Space Engineering, 2009, 2(1): 41–50.CrossRefGoogle Scholar
  235. [235]
    Shirasawa, Y., Mori, O., Miyazaki, Y., Sakamoto, H., Hasome, M., Okuizumi, N., Sawada, H., Furuya, H., Matsunaga, S., Natori, N. et al. Analysis of membrane dynamics using multi-particle model for solar sail demonstrator “IKAROS”. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.Google Scholar
  236. [236]
    Shirasawa, Y., Mori, O., Sawada, H., Chishiki, Y., Kitamura, K., Kawaguchi, J. A study on membrane dynamics and deformation of solar power sail demonstrator “IKAROS”. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012.Google Scholar
  237. [237]
    Johnson, M., McCann, J., Santer, M., Baoyin, H., Gong, S. P. On orbit validation of solar sailing control laws with thin-film spacecraft. In: Proceedings of the 4th International Symposium on Solar Sailing, 2017.Google Scholar
  238. [238]
    Janson, S., Brane craft. NIAC 2016 phase 1 Janson Brane Craft final report. Available at: https://doi.org/www.nasa.gov/sites/default/files/atoms/files/niac_2016_phasei_janson_braneconcept_tagged.pdf.

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical & Aerospace EngineeringUniversity of StrathclydeGlasgowScotland

Personalised recommendations