Advertisement

Hormones

pp 1–12 | Cite as

Selenium and selenoprotein P in nonalcoholic fatty liver disease

  • Stergios A. PolyzosEmail author
  • Jannis Kountouras
  • Antonis Goulas
  • Leonidas Duntas
Review Article

Abstract

Conflicting data link nonalcoholic fatty liver disease (NAFLD), a disease with no currently approved treatment, with selenium (Se) and selenoprotein P (SELENOP), a glycoprotein synthesized and primarily secreted by the hepatocytes, functioning as a Se transporter from the liver to other tissues. This review aims to summarize the evidence between Se, SELENOP, and NAFLD, which may hopefully clarify whether current data on Se and SELENOP in NAFLD warrant further investigation for their diagnostic and therapeutic potential. Most, albeit not all, experimental data show a favorable effect of Se on hepatic steatosis, inflammation, and fibrosis. It seems that Se may exert an antioxidant effect on the liver, at least partly via increasing the activity of glutathione peroxidase, whose depletion contributes to the pathogenesis of hepatic inflammation and fibrosis. Se may also affect metalloproteinases, cytokines, and growth factors participating in the pathogenesis of NAFLD and, most importantly, may induce the apoptosis of hepatic stellate cells, the key players in hepatic fibrosis. However, the association between Se or SELENOP and insulin resistance, which is a principal pathogenetic factor of NAFLD, remains inconclusive. Clinical studies on Se or SELENOP in NAFLD are conflicting, apart from those in advanced liver disease (cirrhosis or hepatocellular carcinoma), in which lower circulating Se and SELENOP are constant findings. Existing data warrant further mechanistic studies in valid animal models of human NAFLD. Prospective cohort studies and possibly randomized controlled trials are also needed to elucidate the diagnostic and therapeutic potential of Se supplementation in selected NAFLD individuals with Se deficiency.

Keywords

Fibrosis Insulin resistance Nonalcoholic fatty liver disease Nonalcoholic steatohepatitis Selenium Selenoprotein P 

Notes

Acknowledgments

We sincerely thank Professor Lutz Schomburg (Charité Universitätsmedizin Berlin) for his expert scientific input and support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Polyzos SA, Mantzoros CS (2016) Nonalcoholic fatty future disease. Metabolism 65:1007–1016CrossRefGoogle Scholar
  2. 2.
    Bugianesi E, Rosso C, Cortez-Pinto H (2016) How to diagnose NAFLD in 2016. J Hepatol 65:643–644CrossRefGoogle Scholar
  3. 3.
    Goh GB, McCullough AJ (2016) Natural history of nonalcoholic fatty liver disease. Dig Dis Sci 61:1226–1233CrossRefGoogle Scholar
  4. 4.
    Polyzos SA, Mantzoros CS (2014) Necessity for timely noninvasive diagnosis of nonalcoholic fatty liver disease. Metabolism 63:161–167CrossRefGoogle Scholar
  5. 5.
    Polyzos SA, Slavakis A, Koumerkeridis G, Katsinelos P, Kountouras J (2018) Noninvasive liver fibrosis tests in patients with nonalcoholic fatty liver disease: an external validation cohort. Horm Metab Res 51:134–140Google Scholar
  6. 6.
    Mintziori G, Polyzos SA (2016) Emerging and future therapies for nonalcoholic steatohepatitis in adults. Expert Opin Pharmacother 17:1937–1946CrossRefGoogle Scholar
  7. 7.
    Wendt S, Schomburg L, Manzanares W, Stoppe C (2019) Selenium in cardiac surgery. Nutr Clin Pract 34:528–539Google Scholar
  8. 8.
    Burk RF, Hill KE, Motley AK, Byrne DW, Norsworthy BK (2015) Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: a randomized controlled trial. Am J Clin Nutr 102:1126–1133CrossRefGoogle Scholar
  9. 9.
    Valea A, Georgescu CE (2018) Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 17:183–196CrossRefGoogle Scholar
  10. 10.
    Burk RF, Hill KE (2005) Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 25:215–235CrossRefGoogle Scholar
  11. 11.
    Thuluvath PJ, Triger DR (1992) Selenium in chronic liver disease. J Hepatol 14:176–182CrossRefGoogle Scholar
  12. 12.
    Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J (2011) Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 60:313–326CrossRefGoogle Scholar
  13. 13.
    Stapleton SR, Garlock GL, Foellmi-Adams L, Kletzien RF (1997) Selenium: potent stimulator of tyrosyl phosphorylation and activator of MAP kinase. Biochim Biophys Acta 1355:259–269CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Li S, Jiang H, Liu B, Lv Z, Guo C, Zhang H (2017) Effects of selenium on apoptosis and abnormal amino acid metabolism induced by excess fatty acid in isolated rat hepatocytes. Mol Nutr Food Res:61Google Scholar
  15. 15.
    Mezey E, Liu X, Potter JJ (2011) The combination of selenium and vitamin E inhibits type I collagen formation in cultured hepatic stellate cells. Biol Trace Elem Res 140:82–94CrossRefGoogle Scholar
  16. 16.
    Clarke C, Baghdadi H, Howie AF, Mason JI, Walker SW, Beckett GJ (2010) Selenium supplementation attenuates procollagen-1 and interleukin-8 production in fat-loaded human C3A hepatoblastoma cells treated with TGFbeta1. Biochim Biophys Acta 1800:611–618CrossRefGoogle Scholar
  17. 17.
    Polyzos SA, Kountouras J, Zavos C (2009) The multi-hit process and the antagonistic roles of tumor necrosis factor-alpha and adiponectin in nonalcoholic fatty liver disease. Hippokratia 13:127Google Scholar
  18. 18.
    Zhang Y, Chen X (2011) Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am J Physiol Endocrinol Metab 300:E77–E85CrossRefGoogle Scholar
  19. 19.
    Polyzos SA, Kountouras J, Zavos C (2009) Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 72:299–314CrossRefGoogle Scholar
  20. 20.
    Hesse-Bahr K, Dreher I, Kohrle J (2000) The influence of the cytokines Il-1beta and INFgamma on the expression of selenoproteins in the human hepatocarcinoma cell line HepG2. Biofactors 11:83–85CrossRefGoogle Scholar
  21. 21.
    Cui D, Liang T, Sun L, Meng L, Yang C, Wang L, Liang T, Li Q (2018) Green synthesis of selenium nanoparticles with extract of hawthorn fruit induced HepG2 cells apoptosis. Pharm Biol 56:528–534CrossRefGoogle Scholar
  22. 22.
    Schafer K, Kyriakopoulos A, Gessner H, Grune T, Behne D (2004) Effects of selenium deficiency on fatty acid metabolism in rats fed fish oil-enriched diets. J Trace Elem Med Biol 18:89–97CrossRefGoogle Scholar
  23. 23.
    Geillinger KE, Rathmann D, Kohrle J, Fiamoncini J, Daniel H, Kipp AP (2014) Hepatic metabolite profiles in mice with a suboptimal selenium status. J Nutr Biochem 25:914–922CrossRefGoogle Scholar
  24. 24.
    Han J, Liang H, Yi J, Tan W, He S, Wang S, Li F, Wu X, Ma J, Shi X, Guo X, Bai C (2017) Long-term selenium-deficient diet induces liver damage by altering hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats. Biol Trace Elem Res 175:396–404CrossRefGoogle Scholar
  25. 25.
    George J (2018) Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry. Biol Chem 399:499–509CrossRefGoogle Scholar
  26. 26.
    Liu L, Geng X, Cai Y, Copple B, Yoshinaga M, Shen J, Nebert DW, Wang H, Liu Z (2018) Hepatic ZIP8 deficiency is associated with disrupted selenium homeostasis, liver pathology, and tumor formation. Am J Physiol Gastrointest Liver Physiol 315:G569–G579CrossRefGoogle Scholar
  27. 27.
    Ozardali I, Bitiren M, Karakilcik AZ, Zerin M, Aksoy N, Musa D (2004) Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp Toxicol Pathol 56:59–64CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Qian ZY, Zhou PH, Zhou XL, Zhang DL, He N, Zhang J, Liu YH, Gu Q (2018) Effects of oral selenium and magnesium co-supplementation on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in rats fed a high-fat diet. Lipids Health Dis 17:165CrossRefGoogle Scholar
  29. 29.
    Shidfar F, Faghihi A, Amiri HL, Mousavi SN (2018) Regression of nonalcoholic fatty liver disease with zinc and selenium co-supplementation after disease progression in rats. Iran J Med Sci 43:26–31Google Scholar
  30. 30.
    Nido SA, Shituleni SA, Mengistu BM, Liu Y, Khan AZ, Gan F, Kumbhar S, Huang K (2016) Effects of selenium-enriched probiotics on lipid metabolism, antioxidative status, histopathological lesions, and related gene expression in mice fed a high-fat diet. Biol Trace Elem Res 171:399–409CrossRefGoogle Scholar
  31. 31.
    Ren D, Hu Y, Luo Y, Yang X (2015) Selenium-containing polysaccharides from Ziyang green tea ameliorate high-fructose diet induced insulin resistance and hepatic oxidative stress in mice. Food Funct 6:3342–3350CrossRefGoogle Scholar
  32. 32.
    Luo M, Huang S, Zhang J, Zhang L, Mehmood K, Jiang J, Zhang N, Zhou D (2019) Effect of selenium nanoparticles against abnormal fatty acid metabolism induced by hexavalent chromium in chicken’s liver. Environ Sci Pollut Res Int 26:21828–21834Google Scholar
  33. 33.
    Ziemlanski S, Wielgus-Serafinska E, Panczenko-Kresowska B, Zelakiewicz K (1984) Effect of long-term diet enrichment with selenium, vitamin E and vitamin B15 on the degree of fatty infiltration of the liver. Acta Phys Pol A 35:382–397Google Scholar
  34. 34.
    Polyzos SA, Kountouras J, Zavos C, Deretzi G (2012) Nonalcoholic fatty liver disease: multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol 46:272–284CrossRefGoogle Scholar
  35. 35.
    Gonzalez-Reimers E, Monedero-Prieto MJ, Gonzalez-Perez JM, Duran-Castellon MC, Galindo-Martin L, Abreu-Gonzalez P, Sanchez-Perez MJ, Santolaria-Fernandez F (2013) Relative and combined effects of selenium, protein deficiency and ethanol on hepatocyte ballooning and liver steatosis. Biol Trace Elem Res 154:281–287CrossRefGoogle Scholar
  36. 36.
    Hamid M, Abdulrahim Y, Liu D, Qian G, Khan A, Huang K (2018) The hepatoprotective effect of selenium-enriched yeast and gum Arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J Food Sci 83:525–534CrossRefGoogle Scholar
  37. 37.
    Chen L, Pan DD, Zhou J, Jiang YZ (2005) Protective effect of selenium-enriched Lactobacillus on CCl4-induced liver injury in mice and its possible mechanisms. World J Gastroenterol 11:5795–5800CrossRefGoogle Scholar
  38. 38.
    Del Bas JM, Rodriguez B, Puiggros F, Marine S, Rodriguez MA, Morina D, Armengol L, Caimari A, Arola L (2017) Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic-fatty liver disease associated to metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 133:409–423Google Scholar
  39. 39.
    Ding M, Potter JJ, Liu X, Torbenson MS, Mezey E (2010) Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biol Trace Elem Res 133:83–97CrossRefGoogle Scholar
  40. 40.
    Polyzos SA, Kountouras J, Mantzoros CS (2016) Adipokines in nonalcoholic fatty liver disease. Metabolism 65:1062–1079CrossRefGoogle Scholar
  41. 41.
    Shen XH, Cheng WF, Li XH, Sun JQ, Li F, Ma L, Xie LM (2005) Effects of dietary supplementation with vitamin E and selenium on rat hepatic stellate cell apoptosis. World J Gastroenterol 11:4957–4961CrossRefGoogle Scholar
  42. 42.
    Zhang M, Song G, Minuk GY (1996) Effects of hepatic stimulator substance, herbal medicine, selenium/vitamin E, and ciprofloxacin on cirrhosis in the rat. Gastroenterology 110:1150–1155CrossRefGoogle Scholar
  43. 43.
    Liu Y, Liu Q, Ye G, Khan A, Liu J, Gan F, Zhang X, Kumbhar S, Huang K (2015) Protective effects of selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats. J Agric Food Chem 63:242–249CrossRefGoogle Scholar
  44. 44.
    Liu Y, Liu Q, Hesketh J, Huang D, Gan F, Hao S, Tang S, Guo Y, Huang K (2018) Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis. J Nutr Biochem 58:138–149CrossRefGoogle Scholar
  45. 45.
    Wasser S, Lim GY, Ong CN, Tan CE (2001) Anti-oxidant ebselen causes the resolution of experimentally induced hepatic fibrosis in rats. J Gastroenterol Hepatol 16:1244–1253CrossRefGoogle Scholar
  46. 46.
    Turkdogan MK, Agaoglu Z, Yener Z, Sekeroglu R, Akkan HA, Avci ME (2001) The role of antioxidant vitamins (C and E), selenium and Nigella sativa in the prevention of liver fibrosis and cirrhosis in rabbits: new hopes. Dtsch Tierarztl Wochenschr 108:71–73Google Scholar
  47. 47.
    Renko K, Hofmann PJ, Stoedter M, Hollenbach B, Behrends T, Kohrle J, Schweizer U, Schomburg L (2009) Down-regulation of the hepatic selenoprotein biosynthesis machinery impairs selenium metabolism during the acute phase response in mice. FASEB J 23:1758–1765CrossRefGoogle Scholar
  48. 48.
    Murano K, Ogino H, Okuno T, Arakawa T, Ueno H (2018) Role of supplementary selenium on the induction of insulin resistance and oxidative stress in NSY mice fed a high fat diet. Biol Pharm Bull 41:92–98CrossRefGoogle Scholar
  49. 49.
    Polyzos SA, Mantzoros CS (2016) Adiponectin as a target for the treatment of nonalcoholic steatohepatitis with thiazolidinediones: a systematic review. Metabolism 65:1297–1306CrossRefGoogle Scholar
  50. 50.
    Polyzos SA, Kountouras J, Mantzoros CS (2019) Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. Metabolism 92:82–97CrossRefGoogle Scholar
  51. 51.
    Dubuisson L, Boussarie L, Bedin CA, Balabaud C, Bioulac-Sage P (1995) Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology 21:805–814Google Scholar
  52. 52.
    Bioulac-Sage P, Dubuisson L, Bedin C, Gonzalez P, de Tinguy-Moreaud E, Garcin H, Balabaud C (1992) Nodular regenerative hyperplasia in the rat induced by a selenium-enriched diet: study of a model. Hepatology 16:418–425CrossRefGoogle Scholar
  53. 53.
    Mihailovic M, Matic G, Lindberg P, Zigic B (1992) Accidental selenium poisoning of growing pigs. Biol Trace Elem Res 33:63–69CrossRefGoogle Scholar
  54. 54.
    Sorensen EM, Harlan CW, Bell JS, Bauer TL, Pradzynski AH (1983) Hepatocyte changes following selenium accumulation in a freshwater teleost. Am J Forensic Med Pathol 4:25–32CrossRefGoogle Scholar
  55. 55.
    Zhao Z, Barcus M, Kim J, Lum KL, Mills C, Lei XG (2016) High dietary selenium intake alters lipid metabolism and protein synthesis in liver and muscle of pigs. J Nutr 146:1625–1633CrossRefGoogle Scholar
  56. 56.
    Wang C, Yang S, Zhang N, Mu Y, Ren H, Wang Y, Li K (2014) Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS One 9:e101315CrossRefGoogle Scholar
  57. 57.
    Berntssen MHG, Sundal TK, Olsvik PA, Amlund H, Rasinger JD, Sele V, Hamre K, Hillestad M, Buttle L, Ornsrud R (2017) Sensitivity and toxic mode of action of dietary organic and inorganic selenium in Atlantic salmon (Salmo salar). Aquat Toxicol 192:116–126CrossRefGoogle Scholar
  58. 58.
    Mueller AS, Pallauf J (2006) Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem 17:548–560CrossRefGoogle Scholar
  59. 59.
    Seale LA, Hashimoto AC, Kurokawa S, Gilman CL, Seyedali A, Bellinger FP, Raman AV, Berry MJ (2012) Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol 32:4141–4154CrossRefGoogle Scholar
  60. 60.
    Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, Hai C (2014) High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett 224:16–23CrossRefGoogle Scholar
  61. 61.
    Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, Ishikura K, Ando H, Takeshita Y, Ota T, Sakurai M, Yamashita T, Mizukoshi E, Yamashita T, Honda M, Miyamoto K, Kubota T, Kubota N, Kadowaki T, Kim HJ, Lee IK, Minokoshi Y, Saito Y, Takahashi K, Yamada Y, Takakura N, Kaneko S (2010) A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab 12:483–495CrossRefGoogle Scholar
  62. 62.
    Mita Y, Nakayama K, Inari S, Nishito Y, Yoshioka Y, Sakai N, Sotani K, Nagamura T, Kuzuhara Y, Inagaki K, Iwasaki M, Misu H, Ikegawa M, Takamura T, Noguchi N, Saito Y (2017) Selenoprotein P-neutralizing antibodies improve insulin secretion and glucose sensitivity in type 2 diabetes mouse models. Nat Commun 8:1658CrossRefGoogle Scholar
  63. 63.
    Jung TW, Choi HY, Lee SY, Hong HC, Yang SJ, Yoo HJ, Youn BS, Baik SH, Choi KM (2013) Salsalate and adiponectin improve palmitate-induced insulin resistance via inhibition of selenoprotein P through the AMPK-FOXO1alpha pathway. PLoS One 8:e66529CrossRefGoogle Scholar
  64. 64.
    Bonnefont-Rousselot D, Ratziu V, Giral P, Charlotte F, Beucler I, Poynard T (2006) Blood oxidative stress markers are unreliable markers of hepatic steatosis. Aliment Pharmacol Ther 23:91–98CrossRefGoogle Scholar
  65. 65.
    Guo CH, Chen PC, Ko WS (2013) Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease. Int J Med Sci 10:730–737CrossRefGoogle Scholar
  66. 66.
    Yang Z, Yan C, Liu G, Niu Y, Zhang W, Lu S, Li X, Zhang H, Ning G, Fan J, Qin L, Su Q (2016) Plasma selenium levels and nonalcoholic fatty liver disease in Chinese adults: a cross-sectional analysis. Sci Rep 6:37288CrossRefGoogle Scholar
  67. 67.
    Choi HY, Hwang SY, Lee CH, Hong HC, Yang SJ, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM (2013) Increased selenoprotein p levels in subjects with visceral obesity and nonalcoholic fatty liver disease. Diabetes Metab J 37:63–71CrossRefGoogle Scholar
  68. 68.
    Cetindagli I, Kara M, Tanoglu A, Ozalper V, Aribal S, Hancerli Y, Unal M, Ozari O, Hira S, Kaplan M, Yazgan Y (2017) Evaluation of endothelial dysfunction in patients with nonalcoholic fatty liver disease: association of selenoprotein P with carotid intima-media thickness and endothelium-dependent vasodilation. Clin Res Hepatol Gastroenterol 41:516–524CrossRefGoogle Scholar
  69. 69.
    di Giuseppe R, Koch M, Schlesinger S, Borggrefe J, Both M, Muller HP, Kassubek J, Jacobs G, Nothlings U, Lieb W (2017) Circulating selenoprotein P levels in relation to MRI-derived body fat volumes, liver fat content, and metabolic disorders. Obesity (Silver Spring) 25:1128–1135CrossRefGoogle Scholar
  70. 70.
    Polyzos SA, Kountouras J, Mavrouli M, Katsinelos P, Doulberis M, Gavana E, Duntas L (2019) Selenoprotein P in patients with nonalcoholic fatty liver disease. Exp Clin Endocrinol Diabetes.  https://doi.org/10.1055/a-0811-9136
  71. 71.
    Flisiak-Jackiewicz M, Bobrus-Chociej A, Wasilewska N, Tarasow E, Wojtkowska M, Lebensztejn DM (2019) Can hepatokines be regarded as novel non-invasive serum biomarkers of intrahepatic lipid content in obese children? Adv Med Sci 64:280–284CrossRefGoogle Scholar
  72. 72.
    Valimaki MJ, Harju KJ, Ylikahri RH (1983) Decreased serum selenium in alcoholics—a consequence of liver dysfunction. Clin Chim Acta 130:291–296CrossRefGoogle Scholar
  73. 73.
    Aaseth J, Alexander J, Thomassen Y, Blomhoff JP, Skrede S (1982) Serum selenium levels in liver diseases. Clin Biochem 15:281–283CrossRefGoogle Scholar
  74. 74.
    Pan D, Huang H (2013) Hair selenium levels in hepatic steatosis patients. Biol Trace Elem Res 152:305–309CrossRefGoogle Scholar
  75. 75.
    Machado MV, Ravasco P, Jesus L, Marques-Vidal P, Oliveira CR, Proenca T, Baldeiras I, Camilo ME, Cortez-Pinto H (2008) Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand J Gastroenterol 43:95–102CrossRefGoogle Scholar
  76. 76.
    Loguercio C, De Girolamo V, Federico A, Feng SL, Crafa E, Cataldi V, Gialanella G, Moro R, Del Vecchio Blanco C (2001) Relationship of blood trace elements to liver damage, nutritional status, and oxidative stress in chronic nonalcoholic liver disease. Biol Trace Elem Res 81:245–254CrossRefGoogle Scholar
  77. 77.
    Damiot A, Demangel R, Noone J, Chery I, Zahariev A, Normand S, Brioche T, Crampes F, de Glisezinski I, Lefai E, Bareille MP, Chopard A, Drai J, Collin-Chavagnac D, Heer M, Gauquelin-Koch G, Prost M, Simon P, Py G, Blanc S, Simon C, Bergouignan A, O'Gorman DJ (2019) A nutrient cocktail prevents lipid metabolism alterations induced by 20 days of daily steps reduction and fructose overfeeding: result from a randomized study. J Appl Physiol (1985) 126:88–101CrossRefGoogle Scholar
  78. 78.
    Softic S, Cohen DE, Kahn CR (2016) Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci 61:1282–1293CrossRefGoogle Scholar
  79. 79.
    Wu J, Zeng C, Yang Z, Li X, Lei G, Xie D, Wang Y, Wei J, Yang T (2019) Association between dietary selenium intake and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study. J Am Coll Nutr.  https://doi.org/10.1080/07315724.2019.16132711-9
  80. 80.
    Nangliya V, Sharma A, Yadav D, Sunder S, Nijhawan S, Mishra S (2015) Study of trace elements in liver cirrhosis patients and their role in prognosis of disease. Biol Trace Elem Res 165:35–40CrossRefGoogle Scholar
  81. 81.
    Kolachi NF, Kazi TG, Afridi HI, Kazi NG, Khan S (2012) Investigation of essential trace and toxic elements in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and after mineral supplementation. Clin Nutr 31:967–973CrossRefGoogle Scholar
  82. 82.
    Burk RF, Early DS, Hill KE, Palmer IS, Boeglin ME (1998) Plasma selenium in patients with cirrhosis. Hepatology 27:794–798CrossRefGoogle Scholar
  83. 83.
    Casaril M, Stanzial AM, Gabrielli GB, Capra F, Zenari L, Galassini S, Moschini G, Liu NQ, Corrocher R (1989) Serum selenium in liver cirrhosis: correlation with markers of fibrosis. Clin Chim Acta 182:221–227CrossRefGoogle Scholar
  84. 84.
    Kim IW, Bae SM, Kim YW, Liu HB, Bae SH, Choi JY, Yoon SK, Chaturvedi PK, Battogtokh G, Ahn WS (2012) Serum selenium levels in Korean hepatoma patients. Biol Trace Elem Res 148:25–31CrossRefGoogle Scholar
  85. 85.
    Lin CC, Huang JF, Tsai LY, Huang YL (2006) Selenium, iron, copper, and zinc levels and copper-to-zinc ratios in serum of patients at different stages of viral hepatic diseases. Biol Trace Elem Res 109:15–24CrossRefGoogle Scholar
  86. 86.
    Lee SM, Kwak SH, Koo JN, Oh IH, Kwon JE, Kim BJ, Kim SM, Kim SY, Kim GM, Joo SK, Koo BK, Shin S, Vixay C, Norwitz ER, Park CW, Jun JK, Kim W, Park JS (2019) Non-alcoholic fatty liver disease in the first trimester and subsequent development of gestational diabetes mellitus. Diabetologia 62:238–248CrossRefGoogle Scholar
  87. 87.
    di Giuseppe R, Plachta-Danielzik S, Koch M, Nothlings U, Schlesinger S, Borggrefe J, Both M, Muller HP, Kassubek J, Jacobs G, Lieb W (2019) Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders. Eur J Nutr 58:1067–1079CrossRefGoogle Scholar
  88. 88.
    Li CL, Nan KJ, Tian T, Sui CG, Liu YF (2007) Selenoprotein P mRNA expression in human hepatic tissues. World J Gastroenterol 13:2363–2368CrossRefGoogle Scholar
  89. 89.
    Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447CrossRefGoogle Scholar
  90. 90.
    Duntas LH, Benvenga S (2015) Selenium: an element for life. Endocrine 48:756–775CrossRefGoogle Scholar
  91. 91.
    Polyzos SA, Kountouras J, Anastasiadis S, Doulberis M, Katsinelos P (2018) Nonalcoholic fatty liver disease: is it time for combination treatment and a diabetes-like approach? Hepatology 68:389CrossRefGoogle Scholar
  92. 92.
    Bleys J, Navas-Acien A, Guallar E (2007) Serum selenium and diabetes in U.S. adults. Diabetes Care 30:829–834CrossRefGoogle Scholar
  93. 93.
    Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268CrossRefGoogle Scholar
  94. 94.
    Steinbrenner H, Speckmann B, Pinto A, Sies H (2011) High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 48:40–45CrossRefGoogle Scholar
  95. 95.
    Stranges S, Navas-Acien A, Rayman MP, Guallar E (2010) Selenium status and cardiometabolic health: state of the evidence. Nutr Metab Cardiovasc Dis 20:754–760CrossRefGoogle Scholar
  96. 96.
    Farrell G, Schattenberg JM, Leclercq I, Yeh MM, Goldin R, Teoh N, Schuppan D (2019) Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis. Hepatology 69:2241–2257CrossRefGoogle Scholar
  97. 97.
    Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, Masuoko H, Gores G (2011) Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 301:G825–G834CrossRefGoogle Scholar
  98. 98.
    Schomburg L, Melander O (2019) Letter by Schomburg and Melander regarding article, “Selenoprotein P promotes the development of pulmonary arterial hypertension: a possible novel therapeutic target”. Circulation 139:722–723CrossRefGoogle Scholar
  99. 99.
    Hybsier S, Schulz T, Wu Z, Demuth I, Minich WB, Renko K, Rijntjes E, Kohrle J, Strasburger CJ, Steinhagen-Thiessen E, Schomburg L (2017) Sex-specific and inter-individual differences in biomarkers of selenium status identified by a calibrated ELISA for selenoprotein P. Redox Biol 11:403–414CrossRefGoogle Scholar
  100. 100.
    Xia Y, Hill KE, Li P, Xu J, Zhou D, Motley AK, Wang L, Byrne DW, Burk RF (2010) Optimization of selenoprotein P and other plasma selenium biomarkers for the assessment of the selenium nutritional requirement: a placebo-controlled, double-blind study of selenomethionine supplementation in selenium-deficient Chinese subjects. Am J Clin Nutr 92:525–531CrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2019

Authors and Affiliations

  1. 1.First Department of Pharmacology, School of MedicineAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Second Medical Clinic, School of Medicine, Ippokration HospitalAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Endocrine Unit, Evgenidion HospitalNational Kapodestrian UniversityAthensGreece

Personalised recommendations