Advertisement

Hormones

, Volume 17, Issue 2, pp 167–182 | Cite as

Ischemic stroke and select adipose-derived and sex hormones: a review

  • Kristy L. Meadows
Review Article

Abstract

Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.

Keywords

Ischemic stroke Sex hormones Relaxin Adipose-derived hormones Adiponectin Leptin Ghrelin 

Notes

Acknowledgements

I would like to thank Dr. Robert Bridges and Dr. Sandra Ayres for their thoughtful comments on this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

References

  1. 1.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet Lond. Engl 371:1612–1623Google Scholar
  2. 2.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198PubMedPubMedCentralGoogle Scholar
  3. 3.
    Broussalis E et al (2012) Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention. Drug Discov. Today 17:296–309PubMedGoogle Scholar
  4. 4.
    Neuhaus AA et al (2014) Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol 71:634–639PubMedGoogle Scholar
  5. 5.
    Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 9:3445–3454PubMedPubMedCentralGoogle Scholar
  6. 6.
    Mozaffarian D et al (2016) Heart disease and stroke atatistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360PubMedGoogle Scholar
  7. 7.
    Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197PubMedGoogle Scholar
  8. 8.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med 333:1581–1587Google Scholar
  9. 9.
    Bushnell CD et al (2014) Sex differences in quality of life after ischemic stroke. Neurology 82:922–931PubMedPubMedCentralGoogle Scholar
  10. 10.
    Glendenning ML, Lovekamp-Swan T, Schreihofer DA (2008) Protective effect of estrogen in endothelin-induced middle cerebral artery occlusion in female rats. Neurosci Lett 445:188–192PubMedPubMedCentralGoogle Scholar
  11. 11.
    Herson PS, Palmateer J, Hurn PD (2013) Biological sex and mechanisms of ischemic brain injury. Transl Stroke Res 4:413–419PubMedGoogle Scholar
  12. 12.
    Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 20:631–652Google Scholar
  13. 13.
    Koellhoffer EC, McCullough LD (2013) The effects of estrogen in ischemic stroke. Transl Stroke Res 4:390–401PubMedGoogle Scholar
  14. 14.
    Siegel C, Turtzo C, McCullough LD (2010) Sex differences in cerebral ischemia: possible molecular mechanisms. J Neurosci Res 88:2765–2774PubMedGoogle Scholar
  15. 15.
    Ström JO, Ingberg E (2014) Impact of methodology on estrogens’ effects on cerebral ischemia in rats: an updated meta-analysis. BMC Neurosci 15:22PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zuo W, Zhang W, Chen N-H (2013) Sexual dimorphism in cerebral ischemia injury. Eur J Pharmacol 711:73–79PubMedGoogle Scholar
  17. 17.
    Caminos JE et al (2003) Expression of ghrelin in the cyclic and pregnant rat ovary. Endocrinology 144:1594–1602PubMedGoogle Scholar
  18. 18.
    Du C et al (2009) Expression of the orexigenic peptide ghrelin in the sheep ovary. Domest Anim Endocrinol 36:89–98PubMedGoogle Scholar
  19. 19.
    Tvarijonaviciute A, Carrillo-Sanchez JD, Ceron JJ (2013) Effect of estradiol and progesterone on metabolic biomarkers in healthy bitches. Reprod Domest Anim Zuchthyg 48:520–524Google Scholar
  20. 20.
    DeLahunta, A., Glass, E. & Kent, M. Veterinary neuroanatomy and clinical neurology. (Elsevier, 2015)Google Scholar
  21. 21.
    Garosi L, Cerebrovascular S (2010) Disease in dogs and cats. Vet Clin North Am Small Anim Pract 40:65–79PubMedGoogle Scholar
  22. 22.
    Henderson VW, Lobo RA (2012) Hormone therapy and the risk of stroke: perspectives 10 years after the Women’s Health Initiative trials. Climacteric J Int Menopause Soc 15:229–234Google Scholar
  23. 23.
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317PubMedPubMedCentralGoogle Scholar
  24. 24.
    Balaskó M, Soós S, Székely M, Pétervári E (2014) Leptin and aging: review and questions with particular emphasis on its role in the central regulation of energy balance. J Chem Neuroanat 61–62:248–255PubMedGoogle Scholar
  25. 25.
    Pétervári E et al (2014) Age versus nutritional state in the development of central leptin resistance. Peptides 56:59–67PubMedGoogle Scholar
  26. 26.
    Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P, Bazi Z (2015) Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag 11:55–70PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kantorová E et al (2015) The intricate network of adipokines and stroke. Int J Endocrinol 2015(967698)Google Scholar
  28. 28.
    Matsumoto M, Ishikawa S, Kajii E (2008) Association of adiponectin with cerebrovascular disease: a nested case-control study. Stroke J. Cereb. Circ. 39:323–328Google Scholar
  29. 29.
    Meier U (2004) Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50:1511–1525PubMedGoogle Scholar
  30. 30.
    Vaiopoulos AG, Marinou K, Christodoulides C, Koutsilieris M (2012) The role of adiponectin in human vascular physiology. Int J Cardiol 155:188–193PubMedGoogle Scholar
  31. 31.
    Wang ZV, Scherer PE (2016) Adiponectin, the past two decades. J Mol Cell Biol.  https://doi.org/10.1093/jmcb/mjw011
  32. 32.
    Schäfer K, Konstantinides S (2011) Adipokines and thrombosis. Clin Exp Pharmacol Physiol 38:864–871PubMedGoogle Scholar
  33. 33.
    Song J, Lee WT, Park KA, Lee JE (2014) Association between risk factors for vascular dementia and adiponectin. Biomed Res Int 2014:261672PubMedPubMedCentralGoogle Scholar
  34. 34.
    Chen M-P et al (2005) Hypoadiponectinemia is associated with ischemic cerebrovascular disease. Arterioscler Thromb Vasc Biol 25:821–826PubMedGoogle Scholar
  35. 35.
    Kuwashiro T et al (2014) Significance of plasma adiponectin for diagnosis, neurological severity and functional outcome in ischemic stroke—Research for Biomarkers in Ischemic Stroke (REBIOS). Metabolism 63:1093–1103PubMedGoogle Scholar
  36. 36.
    Söderberg S et al (2004) Leptin, but not adiponectin, predicts stroke in males. J Intern Med 256:128–136PubMedGoogle Scholar
  37. 37.
    Wolf I et al (2006) Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients. Cancer 106:966–973PubMedGoogle Scholar
  38. 38.
    Arregui M et al (2014) Adiponectin and risk of stroke: prospective study and meta-analysis. Stroke J. Cereb. Circ. 45:10–17Google Scholar
  39. 39.
    Bienek R et al (2012) Adiponectin, leptin, resistin and insulin blood concentrations in patients with ischaemic cerebral stroke. Endokrynol Pol 63:338–345PubMedGoogle Scholar
  40. 40.
    Gardener H et al (2013) Adiponectin and risk of vascular events in the Northern Manhattan study. Atherosclerosis 226:483–489PubMedGoogle Scholar
  41. 41.
    Kos K et al (2007) Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 92:1129–1136PubMedGoogle Scholar
  42. 42.
    Bidulescu A et al (2013) Associations of adiponectin and leptin with incident coronary heart disease and ischemic stroke in African Americans: the Jackson heart study. Front Public Health 1:16PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kizer JR et al (2013) Total and high-molecular-weight adiponectin and risk of coronary heart disease and ischemic stroke in older adults. J Clin Endocrinol Metab 98:255–263PubMedGoogle Scholar
  44. 44.
    Liu X-H et al (2015) Protective role of adiponectin in a rat model of intestinal ischemia reperfusion injury. World J Gastroenterol 21:13250–13258PubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026PubMedGoogle Scholar
  46. 46.
    Tomicek NJ, Hunter JC, Machikas AM, Lopez V, Korzick DH (2015) Acute adiponectin delivery is cardioprotective in the aged female rat heart. Geriatr Gerontol Int 15:636–646PubMedGoogle Scholar
  47. 47.
    Yatomi K et al (2009) Pathophysiological dual action of adiponectin after transient focal ischemia in mouse brain. Brain Res 1297:169–176PubMedGoogle Scholar
  48. 48.
    Chen B et al (2009) Adiponectin protects against cerebral ischemia-reperfusion injury through anti-inflammatory action. Brain Res 1273:129–137PubMedGoogle Scholar
  49. 49.
    Wu M-H et al (2015) Obesity exacerbates rat cerebral ischemic injury through enhancing ischemic adiponectin-containing neuronal apoptosis. Mol Neurobiol.  https://doi.org/10.1007/s12035-015-9305-0
  50. 50.
    Nishimura M et al (2008) Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117:216–223PubMedGoogle Scholar
  51. 51.
    Song W et al (2015) Therapeutic window of globular adiponectin against cerebral ischemia in diabetic mice: the role of dynamic alteration of adiponectin/adiponectin receptor expression. Sci Rep 5:17310PubMedPubMedCentralGoogle Scholar
  52. 52.
    Shen L-H, Miao J, Zhao Y-J, Zhao Y-J, Liang W (2014) Expression of brain adiponectin in a murine model of transient cerebral ischemia. Int J Clin Exp Med 7:4590–4596PubMedPubMedCentralGoogle Scholar
  53. 53.
    Thundyil J et al (2010) Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death. Exp Transl Stroke Med 2:15PubMedPubMedCentralGoogle Scholar
  54. 54.
    Kishida K, Funahashi T, Shimomura I (2014) Adiponectin as a routine clinical biomarker. Best Pract Res Clin Endocrinol Metab 28:119–130PubMedGoogle Scholar
  55. 55.
    McEntegart MB et al (2007) Increase in serum adiponectin concentration in patients with heart failure and cachexia: relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur Heart J 28:829–835PubMedGoogle Scholar
  56. 56.
    Kantorova E et al (2011) Leptin, adiponectin and ghrelin, new potential mediators of ischemic stroke. Neuro Endocrinol Lett 32:716–721PubMedGoogle Scholar
  57. 57.
    Kim BJ, Lee S-H, Ryu W-S, Kim CK, Yoon B-W (2012) Adipocytokines and ischemic stroke: differential associations between stroke subtypes. J Neurol Sci 312:117–122PubMedGoogle Scholar
  58. 58.
    Efstathiou SP et al (2005) Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke J. Cereb. Circ. 36:1915–1919Google Scholar
  59. 59.
    Nagasawa H, Yokota C, Toyoda K, Ito A, Minematsu K (2011) High level of plasma adiponectin in acute stroke patients is associated with stroke mortality. J Neurol Sci 304:102–106PubMedGoogle Scholar
  60. 60.
    Stott DJ et al (2009) Adipocytokines and risk of stroke in older people: a nested case-control study. Int J Epidemiol 38:253–261PubMedGoogle Scholar
  61. 61.
    Gardener H et al (2012) Adiponectin and carotid intima-media thickness in the northern Manhattan study. Stroke J. Cereb. Circ. 43:1123–1125Google Scholar
  62. 62.
    Prugger C et al (2012) Adipocytokines and the risk of ischemic stroke: the PRIME study. Ann Neurol 71:478–486PubMedGoogle Scholar
  63. 63.
    Rajpathak SN et al (2011) Resistin, but not adiponectin and leptin, is associated with the risk of ischemic stroke among postmenopausal women: results from the Women’s Health Initiative. Stroke J. Cereb. Circ. 42:1813–1820Google Scholar
  64. 64.
    Ogorodnikova AD et al (2010) High-molecular-weight adiponectin and incident ischemic stroke in postmenopausal women: a Women’s Health Initiative Study. Stroke J. Cereb. Circ. 41:1376–1381Google Scholar
  65. 65.
    Kanhai DA et al (2013) Adiponectin and incident coronary heart disease and stroke. A systematic review and meta-analysis of prospective studies. Obes Rev Off J Int Assoc Study Obes 14:555–567Google Scholar
  66. 66.
    Park H-K, Ahima RS (2015) Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism 64:24–34PubMedGoogle Scholar
  67. 67.
    Wada N et al (2014) Leptin and its receptors. J Chem Neuroanat 61–62:191–199PubMedGoogle Scholar
  68. 68.
    Wilkinson M, Brown R, Imran SA, Ur E (2007) Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 86:191–209PubMedGoogle Scholar
  69. 69.
    Paz-Filho GJ (2016) The effects of leptin replacement on neural plasticity. Neural Plast 2016(8528934)Google Scholar
  70. 70.
    Tang BL (2008) Leptin as a neuroprotective agent. Biochem Biophys Res Commun 368:181–185PubMedGoogle Scholar
  71. 71.
    Denis RGP, Bing C, Naderali EK, Vernon RG, Williams G (2003) Lactation modulates diurnal expression profiles of specific leptin receptor isoforms in the rat hypothalamus. J Endocrinol 178:225–232PubMedGoogle Scholar
  72. 72.
    Khafaji HARH, Bener AB, Rizk NM, Al Suwaidi J (2012) Elevated serum leptin levels in patients with acute myocardial infarction; correlation with coronary angiographic and echocardiographic findings. BMC Res Notes 5:262PubMedPubMedCentralGoogle Scholar
  73. 73.
    Mu J, Ostrowski RP, Krafft PR, Tang J, Zhang JH (2013) Serum leptin levels decrease after permanent MCAo in the rat and remain unaffected by delayed hyperbaric oxygen therapy. Med Gas Res 3:8PubMedPubMedCentralGoogle Scholar
  74. 74.
    Bouziana S, Tziomalos K, Goulas A, Ηatzitolios AΙ (2016) The role of adipokines in ischemic stroke risk stratification. Int J Stroke Off J Int Stroke Soc.  https://doi.org/10.1177/1747493016632249
  75. 75.
    Liu J et al (2010) Leptinemia and its association with stroke and coronary heart disease in the Jackson Heart Study. Clin Endocrinol 72(32–37)Google Scholar
  76. 76.
    Lukasik M et al (2012) Reactive leptin resistance and the profile of platelet activation in acute ischaemic stroke patients. Thromb Haemost 108:107–118PubMedGoogle Scholar
  77. 77.
    Sierra-Johnson J et al (2007) Relation of increased leptin concentrations to history of myocardial infarction and stroke in the United States population. Am J Cardiol 100:234–239PubMedPubMedCentralGoogle Scholar
  78. 78.
    Söderberg S et al (2003) High leptin levels are associated with stroke. Cerebrovasc Dis Basel Switz 15:63–69Google Scholar
  79. 79.
    Signore AP, Zhang F, Weng Z, Gao Y, Chen J (2008) Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. J Neurochem 106:1977–1990PubMedPubMedCentralGoogle Scholar
  80. 80.
    Zhang F, Wang S, Signore AP, Chen J (2007) Neuroprotective effects of leptin against ischemic injury induced by oxygen-glucose deprivation and transient cerebral ischemia. Stroke J Cereb Circ 38:2329–2336Google Scholar
  81. 81.
    Valerio A et al (2009) Leptin is induced in the ischemic cerebral cortex and exerts neuroprotection through NF-kappaB/c-Rel-dependent transcription. Stroke J. Cereb. Circ. 40:610–617Google Scholar
  82. 82.
    Zhang J et al (2013) Leptin attenuates cerebral ischemia injury through the promotion of energy metabolism via the PI3K/Akt pathway. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 33:567–574Google Scholar
  83. 83.
    Zhang J et al (2011) Leptin attenuates cerebral ischemia/reperfusion injury partially by CGRP expression. Eur J Pharmacol 671:61–69PubMedGoogle Scholar
  84. 84.
    Avraham Y et al (2013) Delayed leptin administration after stroke induces neurogenesis and angiogenesis. J Neurosci Res 91:187–195PubMedGoogle Scholar
  85. 85.
    Deng Z-H et al (2014) Inhibition of the connexin 43 elevation may be involved in the neuroprotective activity of leptin against brain ischemic injury. Cell Mol Neurobiol 34:871–879PubMedGoogle Scholar
  86. 86.
    Calleja AI et al (2013) Blood biomarkers of insulin resistance in acute stroke patients treated with intravenous thrombolysis: temporal profile and prognostic value. J Diabetes Res Clin Metab 2:2Google Scholar
  87. 87.
    Jalil A, Amir S, Majeed R, Jalil F (2010) Circulating leptin levels in elderly subjects with and without cerebrovasular disease. J Coll Physicians Surg—Pak JCPSP 20:350–351PubMedGoogle Scholar
  88. 88.
    Li Y, Zhao Y, Zhang H, Zhao W (2014) The association between serum leptin and post stroke depression: results from a cohort study. PLoS One 9:e103137PubMedPubMedCentralGoogle Scholar
  89. 89.
    Jiménez I et al (2009) High serum levels of leptin are associated with post-stroke depression. Psychol Med 39:1201–1209PubMedGoogle Scholar
  90. 90.
    Wannamethee SG, Shaper AG, Whincup PH, Lennon L, Sattar N (2013) Adiposity, adipokines, and risk of incident stroke in older men. Stroke J. Cereb. Circ. 44:3–8Google Scholar
  91. 91.
    Zeng R, Xu C-H, Xu Y-N, Wang Y-L, Wang M (2014) Association of leptin levels with pathogenetic risk of coronary heart disease and stroke: a meta-analysis. Arq Bras Endocrinol Metabol 58:817–823PubMedGoogle Scholar
  92. 92.
    Ciccone M et al (2001) Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int J Obes Relat Metab Disord J Int Assoc Study Obes 25:805–810Google Scholar
  93. 93.
    Norata GD et al (2007) Leptin: adiponectin ratio is an independent predictor of intima media thickness of the common carotid artery. Stroke J. Cereb. Circ. 38:2844–2846Google Scholar
  94. 94.
    Carbone F et al (2015) Leptin/adiponectin ratio predicts post-stroke neurological outcome. Eur J Clin Investig.  https://doi.org/10.1111/eci.12538
  95. 95.
    Saber H et al (2015) Serum leptin levels and the risk of stroke: the Framingham study. Stroke J. Cereb. Circ. 46:2881–2885Google Scholar
  96. 96.
    Andrews ZB (2011) Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 32:2248–2255PubMedGoogle Scholar
  97. 97.
    Andrews ZB (2011) The extra-hypothalamic actions of ghrelin on neuronal function. Trends Neurosci 34:31–40PubMedGoogle Scholar
  98. 98.
    Solomou S, Korbonits M (2014) The role of ghrelin in weight-regulation disorders: implications in clinical practice. Horm Athens Greece 13:458–475Google Scholar
  99. 99.
    Jeusette IC et al (2005) Effects of chronic obesity and weight loss on plasma ghrelin and leptin concentrations in dogs. Res Vet Sci 79:169–175PubMedGoogle Scholar
  100. 100.
    Stoyanova II (2014) Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol. Dis 72 Pt A:72–83PubMedGoogle Scholar
  101. 101.
    Spencer SJ, Miller AA, Andrews ZB (2013) The role of ghrelin in neuroprotection after ischemic brain injury. Brain Sci 3:344–359PubMedPubMedCentralGoogle Scholar
  102. 102.
    Garcia JM et al (2015) Anamorelin for patients with cancer cachexia: an integrated analysis of two phase 2, randomised, placebo-controlled, double-blind trials. Lancet Oncol 16:108–116PubMedGoogle Scholar
  103. 103.
    Seyhanli ES et al (2015) Assessment of serum and urine ghrelin levels in patients with acute stroke. Int J Clin Exp Med 8:722–729PubMedPubMedCentralGoogle Scholar
  104. 104.
    Dos Santos VV et al (2013) Ghrelin as a neuroprotective and palliative agent in Alzheimer’s and Parkinson’s disease. Curr Pharm Des 19:6773–6790PubMedGoogle Scholar
  105. 105.
    Wu R et al (2005) Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. Cardiovasc Res 68:318–326PubMedGoogle Scholar
  106. 106.
    Moon M et al (2011) Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-β1-42 oligomer-injected mice. J Alzheimers Dis JAD 23:147–159PubMedGoogle Scholar
  107. 107.
    Xu X, Zhu Y, Chuai J (2012) Changes in serum ghrelin and small intestinal motility in rats with ischemic stroke. Anat Rec Hoboken NJ 2007(295):307–312Google Scholar
  108. 108.
    Cheyuo C et al (2011) Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve. Shock Augusta Ga 35:258–265Google Scholar
  109. 109.
    Kenny R et al (2013) Endogenous ghrelin’s role in hippocampal neuroprotection after global cerebral ischemia: does endogenous ghrelin protect against global stroke? Am J Physiol Regul Integr Comp Physiol 304:R980–R990PubMedGoogle Scholar
  110. 110.
    Matsumoto M et al (2013) Decreased serum ghrelin levels in patients with acute myocardial infarction. Tohoku J Exp Med 231:235–242PubMedGoogle Scholar
  111. 111.
    Sax B et al (2013) Characterization of pericardial and plasma ghrelin levels in patients with ischemic and non-ischemic heart disease. Regul Pept 186:131–136PubMedGoogle Scholar
  112. 112.
    Kadoglou NPE et al (2014) Serum levels of novel adipokines in patients with acute ischemic stroke: potential contribution to diagnosis and prognosis. Peptides 57:12–16PubMedGoogle Scholar
  113. 113.
    Xu X-D, Shao F (2015) Enteral ecoimmunonutrition reduced enteral permeability and serum ghrelin activity in severe cerebral stroke patients with lung infection. Cell Biochem Biophys 71:195–198PubMedGoogle Scholar
  114. 114.
    Ritzel RM, Capozzi LA, McCullough LD (2013) Sex, stroke, and inflammation: the potential for estrogen-mediated immunoprotection in stroke. Horm Behav 63:238–253PubMedGoogle Scholar
  115. 115.
    Duckles SP, Krause DN (2007) Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol 34:801–808PubMedGoogle Scholar
  116. 116.
    Manwani B, McCullough LD (2012) Estrogen in ischaemic stroke: the debate continues. Eur J Neurol 19:1276–1277PubMedPubMedCentralGoogle Scholar
  117. 117.
    Schreihofer DA, Ma Y (2013) Estrogen receptors and ischemic neuroprotection: who, what, where, and when? Brain Res 1514:107–122PubMedGoogle Scholar
  118. 118.
    Liu R, Yang S-H (2013) Window of opportunity: estrogen as a treatment for ischemic stroke. Brain Res 1514:83–90PubMedPubMedCentralGoogle Scholar
  119. 119.
    Scott E, Zhang Q, Wang R, Vadlamudi R, Brann D (2012) Estrogen neuroprotection and the critical period hypothesis. Front Neuroendocrinol 33:85–104PubMedGoogle Scholar
  120. 120.
    Bramlett HM (2005) Sex differences and the effect of hormonal therapy on ischemic brain injury. Pathophysiology 12:17–27PubMedGoogle Scholar
  121. 121.
    Liu F, McCullough LD (2012) Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 61:1255–1265PubMedPubMedCentralGoogle Scholar
  122. 122.
    Geary GG, Krause DN, Duckles SP (1998) Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. Am J Phys 275:H292–H300Google Scholar
  123. 123.
    Sohrabji F, Bake S, Lewis DK (2013) Age-related changes in brain support cells: implications for stroke severity. Neurochem Int 63:291–301PubMedPubMedCentralGoogle Scholar
  124. 124.
    Deer RR, Stallone JN (2014) Effects of age and sex on cerebrovascular function in the rat middle cerebral artery. Biol Sex Differ 5:12PubMedPubMedCentralGoogle Scholar
  125. 125.
    Manwani B et al (2013) Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp Neurol 249:120–131PubMedGoogle Scholar
  126. 126.
    Gibson CL, Gray LJ, Murphy SP, Bath PMW (2006) Estrogens and experimental ischemic stroke: a systematic review. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 26:1103–1113Google Scholar
  127. 127.
    Liu F, Yuan R, Benashski SE, McCullough LD (2009) Changes in experimental stroke outcome across the life span. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 29:792–802Google Scholar
  128. 128.
    Liu F, Benashski SE, Xu Y, Siegel M, McCullough LD (2012) Effects of chronic and acute oestrogen replacement therapy in aged animals after experimental stroke. J Neuroendocrinol 24:319–330PubMedPubMedCentralGoogle Scholar
  129. 129.
    Viscoli CM et al (2001) A clinical trial of estrogen-replacement therapy after ischemic stroke. N Engl J Med 345:1243–1249PubMedGoogle Scholar
  130. 130.
    Wassertheil-Smoller S et al (2003) Effect of estrogen plus progestin on stroke in postmenopausal women: the Women’s Health Initiative: a randomized trial. JAMA 289:2673–2684PubMedGoogle Scholar
  131. 131.
    Bath PMW, Gray LJ (2005) Association between hormone replacement therapy and subsequent stroke: a meta-analysis. BMJ 330:342PubMedPubMedCentralGoogle Scholar
  132. 132.
    Maggio M et al (2009) Relationship between higher estradiol levels and 9-year mortality in older women: the Invecchiare in Chianti study. J Am Geriatr Soc 57:1810–1815PubMedPubMedCentralGoogle Scholar
  133. 133.
    Lee JS et al (2010) Prospective study of endogenous circulating estradiol and risk of stroke in older women. Arch Neurol 67:195–201PubMedPubMedCentralGoogle Scholar
  134. 134.
    Pappa T et al (2012) Estradiol levels predict short-term adverse health outcomes in postmenopausal acute stroke women. Eur J Neurol 19:1300–1304PubMedGoogle Scholar
  135. 135.
    Schumacher M et al (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39PubMedGoogle Scholar
  136. 136.
    Gibson CL, Coomber B, Rathbone J (2009) Is progesterone a candidate neuroprotective factor for treatment following ischemic stroke? Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 15:324–332Google Scholar
  137. 137.
    Gibson CL, Gray LJ, Bath PMW, Murphy SP (2008) Progesterone for the treatment of experimental brain injury; a systematic review. Brain J Neurol 131:318–328Google Scholar
  138. 138.
    Wong R et al (2013) Progesterone treatment for experimental stroke: an individual animal meta-analysis. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 33:1362–1372Google Scholar
  139. 139.
    Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG (2015) Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res 286:152–165PubMedGoogle Scholar
  140. 140.
    Gibson CL, Bath PM (2015) Feasibility of progesterone treatment for ischaemic stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X15616782
  141. 141.
    Cheng J, Hurn PD (2010) Sex shapes experimental ischemic brain injury. Steroids 75:754–759PubMedGoogle Scholar
  142. 142.
    Quillinan N, Deng G, Grewal H, Herson PS (2014) Androgens and stroke: good, bad or indifferent? Exp Neurol 259:10–15PubMedGoogle Scholar
  143. 143.
    Geary GG, Krause DN, Duckles SP (2000) Gonadal hormones affect diameter of male rat cerebral arteries through endothelium-dependent mechanisms. Am J Physiol Heart Circ Physiol 279:H610–H618PubMedGoogle Scholar
  144. 144.
    Gonzales RJ, Krause DN, Duckles SP (2004) Testosterone suppresses endothelium-dependent dilation of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 286:H552–H560PubMedGoogle Scholar
  145. 145.
    Liu F, McCullough LD (2012) Interactions between age, sex, and hormones in experimental ischemic stroke. Neurochem Int 61:1255–1265PubMedPubMedCentralGoogle Scholar
  146. 146.
    Gibson CL (2013) Cerebral ischemic stroke: is sex important? J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 33:1355–1361Google Scholar
  147. 147.
    Gibson CL, Attwood L (2015) The impact of sex on stroke pathology and treatment. Neurosci Biobehav Rev.  https://doi.org/10.1016/j.neubiorev.2015.08.020
  148. 148.
    Olsen TS, Andersen KK (2010) Female survival advantage relates to male inferiority rather than female superiority: a hypothesis based on the impact of age and stroke severity on 1-week to 1-year case fatality in 40,155 men and women. Gend Med 7:284–295PubMedGoogle Scholar
  149. 149.
    Basaria S et al (2010) Adverse events associated with testosterone administration. N Engl J Med 363:109–122PubMedPubMedCentralGoogle Scholar
  150. 150.
    Bathgate RAD et al (2013) Relaxin family peptides and their receptors. Physiol Rev 93:405–480PubMedGoogle Scholar
  151. 151.
    Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ (2015) International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1–4, the receptors for relaxin family peptides. Pharmacol. Rev 67:389–440PubMedPubMedCentralGoogle Scholar
  152. 152.
    Bani D (2008) Relaxin as a natural agent for vascular health. Vasc Health Risk Manag 4:515–524PubMedPubMedCentralGoogle Scholar
  153. 153.
    Dschietzig T, Bartsch C, Baumann G, Stangl K (2006) Relaxin—a pleiotropic hormone and its emerging role for experimental and clinical therapeutics. Pharmacol Ther 112:38–56PubMedGoogle Scholar
  154. 154.
    Jelinic M et al (2014) Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J Off Publ Fed Am Soc Exp Biol 28:275–287Google Scholar
  155. 155.
    Xu Q, Chakravorty A, Bathgate RAD, Dart AM, Du XJ (2010) Relaxin therapy reverses large artery remodeling and improves arterial compliance in senescent spontaneously hypertensive rats. Hypertension 55:1260–1266PubMedGoogle Scholar
  156. 156.
    Dschietzig T, Bartsch C, Baumann G, Stangl K (2009) RXFP1-inactive relaxin activates human glucocorticoid receptor: further investigations into the relaxin–GR pathway. Regul Pept 154:77–84PubMedGoogle Scholar
  157. 157.
    Collino M et al (2013) Acute treatment with relaxin protects the kidney against ischaemia/reperfusion injury. J Cell Mol Med 17:1494–1505PubMedPubMedCentralGoogle Scholar
  158. 158.
    Yoshida T, Kumagai H, Kohsaka T, Ikegaya N (2013) Relaxin protects against renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 305:F1169–F1176PubMedGoogle Scholar
  159. 159.
    Alexiou K, Wilbring M, Matschke K, Dschietzig T (2013) Relaxin protects rat lungs from ischemia-reperfusion injury via inducible NO synthase: role of ERK-1/2, PI3K, and forkhead transcription factor FKHRL1. PLoS One 8:e75592PubMedPubMedCentralGoogle Scholar
  160. 160.
    Brecht A, Bartsch C, Baumann G, Stangl K, Dschietzig T (2011) Relaxin inhibits early steps in vascular inflammation. Regul Pept 166:76–82PubMedGoogle Scholar
  161. 161.
    Teerlink JR et al (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381:29–39PubMedGoogle Scholar
  162. 162.
    Schöndorf T et al (2007) Relaxin expression correlates significantly with serum changes in VEGF in response to antidiabetic treatment in male patients with type 2 diabetes mellitus. Clin Lab 53:193–198PubMedGoogle Scholar
  163. 163.
    Schöndorf T et al (2007) Relaxin expression correlates significantly with serum fibrinogen variation in response to antidiabetic treatment in women with type 2 diabetes mellitus. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 23:356–360Google Scholar
  164. 164.
    Leo CH, Jelinic M, Parkington HC, Tare M, Parry LJ (2014) Acute intravenous injection of serelaxin (recombinant human relaxin-2) causes rapid and sustained bradykinin-mediated vasorelaxation. J Am Heart Assoc 3:e000493PubMedPubMedCentralGoogle Scholar
  165. 165.
    Dschietzig T et al (2003) Relaxin, a pregnancy hormone, is a functional endothelin-1 antagonist: attenuation of endothelin-1-mediated vasoconstriction by stimulation of endothelin type-B receptor expression via ERK-1/2 and nuclear factor-kappaB. Circ Res 92:32–40PubMedGoogle Scholar
  166. 166.
    Chan S-L, Cipolla MJ (2011) Relaxin causes selective outward remodeling of brain parenchymal arterioles via activation of peroxisome proliferator-activated receptor. FASEB J 25:3229–3239PubMedPubMedCentralGoogle Scholar
  167. 167.
    Chan S-L, Sweet JG, Cipolla MJ (2013) Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 27:3917–3927Google Scholar
  168. 168.
    Willcox JM, Summerlee AJS (2014) Relaxin protects astrocytes from hypoxia in vitro. PLoS One 9:e90864PubMedPubMedCentralGoogle Scholar
  169. 169.
    Wilson BC, Rappaport R (2009) An in vitro study of the protective effect of relaxin on brain tissue under ischemic stress. Ann N Y Acad Sci 1160:265–268PubMedGoogle Scholar
  170. 170.
    Wilson BC (2005) Relaxin pretreatment decreases infarct size in male rats after middle cerebral artery occlusion. Ann N Y Acad Sci 1041:223–228PubMedGoogle Scholar
  171. 171.
    Wilson BC, Connell B, Saleh TM (2006) Relaxin-induced reduction of infarct size in male rats receiving MCAO is dependent on nitric oxide synthesis and not estrogenic mechanisms. Neurosci Lett 393:160–164PubMedGoogle Scholar
  172. 172.
    Bergeron LH et al (2015) Relaxin peptide hormones are protective during the early stages of ischemic stroke in male rats. Endocrinology 156:638–646PubMedGoogle Scholar
  173. 173.
    Milia P et al (2013) Efficacy of relaxin on functional recovery of post stroke patients. Ital J Anat Embryol Arch Ital Anat Ed Embriologia 118:92–97Google Scholar
  174. 174.
    Savopoulos C, Michalakis K, Apostolopoulou M, Miras A, Hatzitolios A (2011) Adipokines and stroke: a review of the literature. Maturitas 70:322–327PubMedGoogle Scholar
  175. 175.
    Binder C et al (2014) Relaxins enhance growth of spontaneous murine breast cancers as well as metastatic colonization of the brain. Clin Exp Metastasis 31:57–65PubMedGoogle Scholar
  176. 176.
    Lamp O et al (2013) The metastatic potential of canine mammary tumours can be assessed by mRNA expression analysis of connective tissue modulators. Vet Comp Oncol 11:70–85PubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2018

Authors and Affiliations

  1. 1.Cummings School of Veterinary MedicineTufts UniversityNorth GraftonUSA

Personalised recommendations