Advertisement

How all-type dementia risk factors and modifiable risk interventions may be relevant to the first-generation aging with HIV infection?

  • Htein Linn Aung
  • Scherazad Kootar
  • Thomas M. Gates
  • Bruce J. Brew
  • Lucette A. CysiqueEmail author
Special Article
  • 24 Downloads

Abstract

Purpose

The purpose of this review is to provide an overview of established risk factors for all-type dementia and results of interventions on dementia modifiable risk factors, all with relevance to aging people living with HIV (PLHIV).

Methods

Narrative literature review.

Results

Our review identifies a high prevalence of risk factors for dementia in the global HIV population that is entering dementia age range (60 +), in relation to both traditional and HIV-specific risk factors. This includes age (HIV-related premature aging and possibly HIV-related accelerated brain aging and cerebrovascular injury), HIV-related and non-HIV-related cardiovascular diseases burden with related-vascular brain damage, HIV-associated neurocognitive disorders, high mental health burden, low educational/socio-economic status, historical immune compromise, and persistent immune activation with consequent augmented immune senescence. Our review highlights that the results of interventions on all-type dementia modifiable factors show discrepancies between positive observational study results and inconclusive clinical trials. The main reasons for such discrepancies relate to the preventative framework that complex interventions’ trials have difficulty to emulate and the suboptimal measurement of cognitive change. Multi-domain intervention trials are now advocated to concomitantly tackle complex age-related comorbid profiles.

Conclusions

The burden of dementia risk in aging PLHIV is higher than that in the general population, particularly in the most vulnerable clusters. Epidemiological studies are urgently needed to provide accurate estimates. Lessons from interventions trials in all-type dementia on modifiable factors need to be carefully considered for enhancing trials’ potential in aging PLHIV. A comprehensive and preventative neurogeriatric healthcare response linked with HIV communities and dementia associations should be urgently put in place.

Keywords

HIV/AIDS Dementia Risk factors Aging HIV-associated neurocognitive disorders Interventions Dementia modifiable risk factors 

Notes

Acknowledgements

We thank our research participants for their invaluable contribution to our NeuroHIV research program.

Authors contributions

HLA reviewed research in HIV and aging and primarily contributed to this section and to the last version of the manuscript, SK contributed to the dementia risk factors and healthy aging recommendations’ sections, TMG drafted part of an early version of the manuscript, contributed to the dementia risk factors’ section and contributed to the last version of the manuscript, BJB reviewed and contributed to the last version of the manuscript, LAC determine the review structures and focus, and contributed to all manuscripts versions.

Funding

NHMRC project grants (APP568746; CIA/PI Cysique, APP1105808 CIA/PI Brew) and NHMRC Career Development Fellowship (APP1045400; CIA/PI Cysique), Peter Duncan Neuroscience Research Unit at St. Vincent’s Centre for Applied Medical Research (St. Vincent’s Hospital, Sydney; Director: Prof. Brew).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

References

  1. 1.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA et al (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 338(13):853–860CrossRefPubMedGoogle Scholar
  2. 2.
    Teeraananchai S, Kerr S, Amin J, Ruxrungtham K, Law M (2017) Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV medicine. 18(4):256–266CrossRefPubMedGoogle Scholar
  3. 3.
    Lima VD, Harrigan R, Bangsberg DR, Hogg RS, Gross R, Yip B et al (2009) The combined effect of modern highly active antiretroviral therapy regimens and adherence on mortality over time. J Acquired Immune Deficiency Synd 50(5):529CrossRefGoogle Scholar
  4. 4.
    Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382(9903):1525–1533CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mahungu TW, Rodger AJ, Johnson MA (2009) HIV as a chronic disease. Clin Med 9(2):125–128CrossRefGoogle Scholar
  6. 6.
    UNAIDS (2017) HIV and Ageing. Switzerland: UNAIDSGoogle Scholar
  7. 7.
    Smit M, Brinkman K, Geerlings S, Smit C, Thyagarajan K, Sighem A et al (2015) Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 15(7):810–818CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sprague C, Brown SM (2017) Local and global HIV aging demographics and research. Interdisciplinary topics in gerontology and geriatrics 42:1–10CrossRefPubMedGoogle Scholar
  9. 9.
    Justice AC (2010) HIV and aging: time for a new paradigm. Curr HIV/AIDS Rep 7(2):69–76CrossRefPubMedGoogle Scholar
  10. 10.
    Tavoschi L, Gomes Dias J, Pharris A (2017) New HIV diagnoses among adults aged 50 years or older in 31 European countries, 2004–15: an analysis of surveillance data. Lancet HIV 4(11):e514–e521CrossRefPubMedGoogle Scholar
  11. 11.
    Talukdar A, Khanra D, Ray S, Talukdar P, Rana S, Banerjee B et al (2013) HIV among the elderly with special reference to mode of presentation at a tertiary care hospital in Kolkata, India. Tropical doctor 43(3):100–102CrossRefPubMedGoogle Scholar
  12. 12.
    Allavena C, Hanf M, Rey D, Duvivier C, BaniSadr F, Poizot-Martin I et al (2018) Antiretroviral exposure and comorbidities in an aging HIV-infected population: the challenge of geriatric patients. PLoS One 13(9):e0203895CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cornell M, Johnson LF, Schomaker M, Tanser F, Maskew M, Wood R et al (2015) Age in antiretroviral therapy programmes in South Africa: a retrospective, multicentre, observational cohort study. Lancet HIV 2(9):e368–e375CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Europe ECfDPaCWROf (2017) HIV/AIDS surveillance in Europe 2017–2016 data. StockholmGoogle Scholar
  15. 15.
    Mahy M, Autenrieth CS, Stanecki K, Wynd S (2014) Increasing trends in HIV prevalence among people aged 50 years and older: evidence from estimates and survey data. Aids 28(Suppl 4):S453–S459CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Negin J, Barnighausen T, Lundgren JD, Mills EJ (2012) Aging with HIV in Africa: the challenges of living longer. Aids 26(Suppl 1):S1–S5CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brothers TD, Kirkland S, Theou O, Zona S, Malagoli A, Stentarelli C et al (2014) Exploring aging trajectories among people with HIV and a general community-based cohort: transitions in health status and risk of death. Reviews in Antiviral Therapy & Infectious Diseases 7Google Scholar
  18. 18.
    Kuo CL, Lu CL, Chang YH, Li CY (2018) Population-based cohort study on dementia risk in patients with type 1 diabetes mellitus. Neuroepidemiology 50(1–2):57–62CrossRefPubMedGoogle Scholar
  19. 19.
    Kivipelto M, Mangialasche F, Ngandu T (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol 14(11):653–666CrossRefPubMedGoogle Scholar
  20. 20.
    Costagliola D (2014) Demographics of HIV and aging. Curr Opin HIV AIDS 9(4):294–301CrossRefPubMedGoogle Scholar
  21. 21.
    Solomon A, Mangialasche F, Richard E, Andrieu S, Bennett DA, Breteler M et al (2014) Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med. 275(3):229–250CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deckers K, van Boxtel MP, Schiepers OJ, de Vugt M, Munoz Sanchez JL, Anstey KJ et al (2015) Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry. 30(3):234–246CrossRefPubMedGoogle Scholar
  23. 23.
    Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10(9):819–828CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 80(19):1778–1783CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB et al (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 29(1–2):125–132CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wing EJ (2016) HIV and aging. International journal of infectious diseases. 53:61–68CrossRefPubMedGoogle Scholar
  27. 27.
    Cysique LA, Brew BJ (2014) The effects of HIV and aging on brain functions: proposing a research framework and update on last 3 years’ findings. Curr Opin HIV AIDS. 9(4):355–364CrossRefPubMedGoogle Scholar
  28. 28.
    Milanini B, Valcour V (2017) Differentiating HIV-associated neurocognitive disorders from Alzheimer’s Disease: an emerging issue in geriatric NeuroHIV. Curr HIV/AIDS Rep. 14(4):123–132CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cysique LA, Brew BJ. Vascular Cognitive Impairment and HIV-Associated Neurocognitive Disorder: A New Paradigm. J Neurovirol. In PressGoogle Scholar
  30. 30.
    Piggott DA, Erlandson KM, Yarasheski KE (2016) Frailty in HIV: epidemiology, biology, measurement, interventions, and research needs. Curr HIV/AIDS Rep. 13(6):340–348CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tassiopoulos K, Abdo M, Wu K, Koletar SL, Palella FJ, Kalayjian R et al (2017) Frailty is strongly associated with increased risk of recurrent falls among older HIV-infected adults. Aids. 31(16):2287–2294CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Önen NF, Agbebi A, Shacham E, Stamm KE, Önen AR, Overton ET (2009) Frailty among HIV-infected persons in an urban outpatient care setting. J Infect 59(5):346–352CrossRefPubMedGoogle Scholar
  33. 33.
    Maciel RA, Klück HM, Durand M, Sprinz E (2018) Comorbidity is more common and occurs earlier in persons living with HIV than in HIV-uninfected matched controls, aged 50 years and older: a cross-sectional study. Int J Infect Dis 70:30–35CrossRefPubMedGoogle Scholar
  34. 34.
    Johs NA, Wu K, Tassiopoulos K, Koletar SL, Kalayjian RC, Ellis RJ et al (2017) Disability among middle-aged and older persons with human immunodeficiency virus infection. Clin Infect Dis. 65(1):83–91CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vance DE, Cody SL (2015) Predictions of geriatric HIV in 2030. Lancet Infect Dis. 15(7):753–754CrossRefPubMedGoogle Scholar
  36. 36.
    Sharp M. The unintended consequences of AIDS survivalGoogle Scholar
  37. 37.
    Pathai S, Bajillan H, Landay AL, High KP (2014) Is HIV a model of accelerated or accentuated aging? J Gerontol Ser A, Biol Sci Med Sci 69(7):833–842CrossRefGoogle Scholar
  38. 38.
    Rajasuriar R, Chong ML, Ahmad Bashah NS, Abdul Aziz SA, McStea M, Lee ECY et al (2017) Major health impact of accelerated aging in young HIV-infected individuals on antiretroviral therapy. Aids. 31(10):1393–1403CrossRefPubMedGoogle Scholar
  39. 39.
    Brooks JT, Buchacz K, Gebo KA, Mermin J (2012) HIV infection and older Americans: the public health perspective. Am J Publ Health 102(8):1516–1526CrossRefGoogle Scholar
  40. 40.
    Xu S, Vucic EA, Shaipanich T, Lam S, Lam W, Montaner JS et al (2018) Decreased telomere length in the small airway epithelium suggests accelerated aging in the lungs of persons living with human immunodeficiency virus (HIV). Respir Res. 19(1):117CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gianesin K, Noguera-Julian A, Zanchetta M, Del Bianco P, Petrara MR, Freguja R et al (2016) Premature aging and immune senescence in HIV-infected children. Aids. 30(9):1363–1373CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McCrary AW, Nduka CU, Stranges S, Bloomfield GS (2017) Features of cardiovascular disease in low-income and middle-income countries in adults and children living with HIV. Curr Opin HIV AIDS. 12(6):579–584CrossRefPubMedGoogle Scholar
  43. 43.
    Loy CT, Schofield PR, Turner AM, Kwok JB (2014) Genetics of dementia. Lancet. 383(9919):828–840CrossRefPubMedGoogle Scholar
  44. 44.
    Lautenschlager NT, Cupples LA, Rao VS, Auerbach SA, Becker R, Burke J et al (1996) Risk of dementia among relatives of Alzheimer’s disease patients in the MIRAGE study: what is in store for the oldest old? Neurology. 46(3):641–650CrossRefPubMedGoogle Scholar
  45. 45.
    Paulson HL, Igo I (2011) Genetics of dementia. Semin Neurol. 31(5):449–460CrossRefPubMedGoogle Scholar
  46. 46.
    Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H (2015) Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 36(5):297–309CrossRefPubMedGoogle Scholar
  47. 47.
    Strand BH, Rosness TA, Engedal K, Magnus P, Bergem AL, Schirmer H et al (2015) Interaction of apolipoprotein E genotypes, lifestyle factors and future risk of dementia-related mortality: the cohort of Norway (CONOR). Dement Geriatr Cogn Disord. 40(3–4):137–147CrossRefPubMedGoogle Scholar
  48. 48.
    Morgan EE, Woods SP, Letendre SL, Franklin DR, Bloss C, Goate A et al (2013) Apolipoprotein E4 genotype does not increase risk of HIV-associated neurocognitive disorders. J Neurovirol. 19(2):150–156CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Moore DJ, Arce M, Moseley S, McCutchan JA, Marquie-Beck J, Franklin DR et al (2011) Family history of dementia predicts worse neuropsychological functioning among HIV-infected persons. J Neuropsychiatry Clin Neurosci. 23(3):316–323CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pike CJ (2017) Sex and the development of Alzheimer’s disease. J Neurosci Res. 95(1–2):671–680CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mayeda ER, Glymour MM, Quesenberry CP, Whitmer RA (2016) Inequalities in dementia incidence between six racial and ethnic groups over 14 years. Alzheimers Dement. 12(3):216–224CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Noble JM, Schupf N, Manly JJ, Andrews H, Tang MX, Mayeux R (2017) Secular trends in the incidence of dementia in a multi-ethnic community. J Alzheimers Dis. 60(3):1065–1075CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Rockwood K, Xiao S et al (2013) COSMIC (Cohort Studies of Memory in an International Consortium): an international consortium to identify risk and protective factors and biomarkers of cognitive ageing and dementia in diverse ethnic and sociocultural groups. BMC Neurol. 13(165):165CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sachdev PS, Lipnicki DM, Kochan NA, Crawford JD, Thalamuthu A, Andrews G et al (2015) The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: The COSMIC Collaboration. PLoS One. 10(11):e0142388CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rubin LH, Maki PM, Springer G, Benning L, Anastos K, Gustafson D et al (2017) Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology. 89(15):1594–1603CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Saloner R, Cysique LA (2017) HIV-Associated neurocognitive disorders: a global perspective. J Int Neuropsychol Soc. 23(9–10):860–869CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Marquine MJ, Sakamoto M, Dufour C, Rooney A, Fazeli P, Umlauf A et al (2016) The impact of ethnicity/race on the association between the Veterans Aging Cohort Study (VACS) Index and neurocognitive function among HIV-infected persons. J Neurovirol. 22(4):442–454CrossRefPubMedGoogle Scholar
  58. 58.
    Justin BN, Turek M, Hakim AM (2013) Heart disease as a risk factor for dementia. Clin Epidemiol. 5:135–145PubMedPubMedCentralGoogle Scholar
  59. 59.
    Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13(8):788–794CrossRefPubMedGoogle Scholar
  60. 60.
    Holloway CJ, Boccara F (2017) HIV-related cardiovascular disease: closing the gap in mortality. Curr Opin HIV AIDS. 12(6):509–512CrossRefPubMedGoogle Scholar
  61. 61.
    Hernandorena I, Duron E, Vidal JS, Hanon O (2017) Treatment options and considerations for hypertensive patients to prevent dementia. Expert Opin Pharmacother. 18(10):989–1000CrossRefPubMedGoogle Scholar
  62. 62.
    Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K et al (2015) BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol. 3(6):431–436CrossRefPubMedGoogle Scholar
  63. 63.
    Alzheimer’s Disease International (2014) World Alzheimer’s report: Dementia and risk reduction: an analysis of protective and modifiable factors https://www.alz.co.uk/research/world-report-2014. London: Alzheimer’s disease International (AdI)
  64. 64.
    Anstey KJ, Ashby-Mitchell K, Peters R (2017) Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis. 56(1):215–228CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Schultz BG, Patten DK, Berlau DJ (2018) The role of statins in both cognitive impairment and protection against dementia: a tale of two mechanisms. Transl Neurodegener. 7(5):5CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cheng C, Lin CH, Tsai YW, Tsai CJ, Chou PH, Lan TH (2014) Type 2 diabetes and antidiabetic medications in relation to dementia diagnosis. J Gerontol Ser A, Biol Sci Med Sci 69(10):1299–1305CrossRefGoogle Scholar
  67. 67.
    Williamson JD, Launer LJ, Bryan RN, Coker LH, Lazar RM, Gerstein HC et al (2014) Cognitive function and brain structure in persons with type 2 diabetes mellitus after intensive lowering of blood pressure and lipid levels: a randomized clinical trial. JAMA Intern Med. 174(3):324–333CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Meneilly GS, Tessier DM (2016) Diabetes, dementia and hypoglycemia. Can J Diabetes. 40(1):73–76CrossRefPubMedGoogle Scholar
  69. 69.
    Kuzma E, Lourida I, Moore SF, Levine DA, Ukoumunne OC, Llewellyn DJ (2018) Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement. 14(11):1416–1426CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhao C, Noble JM, Marder K, Hartman JS, Gu Y, Scarmeas N (2018) dietary patterns, physical activity, sleep, and risk for dementia and cognitive decline. Curr Nutr Rep. 7(4):335–345CrossRefPubMedGoogle Scholar
  71. 71.
    Van Epps P, Kalayjian RC (2017) Human immunodeficiency virus and aging in the era of effective antiretroviral therapy. Infect Dis Clin N Am. 31(4):791–810CrossRefGoogle Scholar
  72. 72.
    Post G (2013) HIV infection and the risk of acute myocardial infarction. US News & World Report (versions also appeared in MSN, Health24, MentalHelp, and 12 other publications)Google Scholar
  73. 73.
    Dorjee K, Choden T, Baxi SM, Steinmaus C, Reingold AL (2018) Risk of cardiovascular disease associated with exposure to abacavir among individuals with HIV: a systematic review and meta-analyses of results from 17 epidemiologic studies. Int J Antimicrob Agents 52(5):541–553CrossRefPubMedGoogle Scholar
  74. 74.
    Maggi P, Di Biagio A, Rusconi S, Cicalini S, D’Abbraccio M, d’Ettorre G et al (2017) Cardiovascular risk and dyslipidemia among persons living with HIV: a review. BMC Infect Dis. 17(1):551CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Barnes RP, Lacson JC, Bahrami H (2017) HIV infection and risk of cardiovascular diseases beyond coronary artery disease. Curr Atheroscler Rep. 19(5):20CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Grinspoon SK (2014) Perspective cardiovascular disease in HIV: traditional and nontraditional risk factors. Topics Antiviral Med 22(4):676Google Scholar
  77. 77.
    Bozzette SA (2011) HIV and cardiovascular disease. Oxford University Press, OxfordCrossRefGoogle Scholar
  78. 78.
    Freiberg MS, Chang CH, Skanderson M, Patterson OV, DuVall SL, Brandt CA et al (2017) Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: results from the veterans aging cohort study. JAMA Cardiol. 2(5):536–546CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gutierrez J, Albuquerque ALA, Falzon L (2017) HIV infection as vascular risk: a systematic review of the literature and meta-analysis. PLoS One. 12(5):e0176686CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Moulignier A, Savatovsky J, Assoumou L, Lescure FX, Lamirel C, Godin O et al (2018) Silent cerebral small-vessel disease is twice as prevalent in middle-aged individuals with well-controlled, combination antiretroviral therapy-treated human immunodeficiency virus (HIV) than in HIV-uninfected individuals. Clin Infect Dis. 66(11):1762–1769CrossRefPubMedGoogle Scholar
  81. 81.
    Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D (2006) Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 63(5):530–538CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cherbuin N, Kim S, Anstey KJ (2015) Dementia risk estimates associated with measures of depression: a systematic review and meta-analysis. BMJ Open. 5(12):e008853CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gimson A, Schlosser M, Huntley JD, Marchant NL (2018) Support for midlife anxiety diagnosis as an independent risk factor for dementia: a systematic review. BMJ Open. 8(4):e019399CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Schwarzinger M, Pollock BG, Hasan OSM, Dufouil C, Rehm J (2018) Contribution of alcohol use disorders to the burden of dementia in France 2008–13: a nationwide retrospective cohort study. Lancet Publ Health. 3(3):e124–e132CrossRefGoogle Scholar
  85. 85.
    Sabia S, Fayosse A, Dumurgier J, Dugravot A, Akbaraly T, Britton A et al (2018) Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. Bmj. 362:k2927CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Norman LR, Basso M (2015) An update of the review of neuropsychological consequences of HIV and substance abuse: a literature review and implications for treatment and future research. Curr Drug Abuse Rev. 8(1):50–71CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Mitchell J, Wight M, Van Heerden A, Rochat TJ (2016) Intimate partner violence, HIV, and mental health: a triple epidemic of global proportions. Int Rev Psychiatry. 28(5):452–463CrossRefPubMedGoogle Scholar
  88. 88.
    Langebeek N, Kooij KW, Wit FW, Stolte IG, Sprangers MAG, Reiss P et al (2017) Impact of comorbidity and ageing on health-related quality of life in HIV-positive and HIV-negative individuals. Aids. 31(10):1471–1481CrossRefPubMedGoogle Scholar
  89. 89.
    Milanini B, Catella S, Perkovich B, Esmaeili-Firidouni P, Wendelken L, Paul R et al (2017) Psychiatric symptom burden in older people living with HIV with and without cognitive impairment: the UCSF HIV over 60 cohort study. AIDS Care. 29(9):1178–1185CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Porter L (2017) Older people with HIV enter uncharted territory (2014 +). Nursing Older People. 29(2):14CrossRefPubMedGoogle Scholar
  91. 91.
    McDonald K, Elliott J, Saugeres L (2013) Ageing with HIV in Victoria: findings from a qualitative study. HIV Aust 11(2):13Google Scholar
  92. 92.
    Cysique LA, Dermody N, Carr A, Brew BJ, Teesson M (2016) The role of depression chronicity and recurrence on neurocognitive dysfunctions in HIV-infected adults. J Neurovirol. 22(1):56–65CrossRefPubMedGoogle Scholar
  93. 93.
    Ford E, Greenslade N, Paudyal P, Bremner S, Smith HE, Banerjee S et al (2018) Predicting dementia from primary care records: a systematic review and meta-analysis. PLoS One. 13(3):e0194735CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Radford K, Delbaere K, Draper B, Mack HA, Daylight G, Cumming R et al (2017) Childhood stress and adversity is associated with late-life dementia in aboriginal Australians. Am J Geriatr Psychiatry. 25(10):1097–1106CrossRefPubMedGoogle Scholar
  95. 95.
    Amin P, Douaihy A (2018) Substance use disorders in people living with human immunodeficiency virus/AIDS. Nurs Clin North Am 53(1):57–65CrossRefPubMedGoogle Scholar
  96. 96.
    Paratz ED, Cunningham NJ, MacIsaac AI (2016) The cardiac complications of methamphetamines. Heart Lung Circ 25(4):325–332CrossRefPubMedGoogle Scholar
  97. 97.
    Anstey KJ, Cherbuin N, Herath PM (2013) Development of a new method for assessing global risk of Alzheimer’s disease for use in population health approaches to prevention. Prev Sci 14(4):411–421CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Yates LA, Ziser S, Spector A, Orrell M (2016) Cognitive leisure activities and future risk of cognitive impairment and dementia: systematic review and meta-analysis. Int Psychogeriatr 28(11):1791–1806CrossRefPubMedGoogle Scholar
  99. 99.
    Morgan EE, Woods SP, Smith C, Weber E, Scott JC, Grant I (2012) Lower cognitive reserve among individuals with syndromic HIV-associated neurocognitive disorders (HAND). AIDS Behav 16(8):2279–2285CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Cysique LA, Brew BJ (2011) Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol 17(2):176–183CrossRefPubMedGoogle Scholar
  101. 101.
    Lipnicki DM, Crawford JD, Dutta R, Thalamuthu A, Kochan NA, Andrews G et al (2017) Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: a collaborative cohort study. PLoS Med 14(3):e1002261CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Meng X, D’Arcy C (2012) Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS One 7(6):e38268CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Cysique LA, Maruff P, Brew BJ (2006) Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology 66(9):1447–1450CrossRefPubMedGoogle Scholar
  104. 104.
    Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ et al (2010) Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology 75(13):1150–1158CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S et al (2014) Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 13(11):1139–1151CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Cysique LA, Heaton RK, Kamminga J, Lane T, Gates TM, Moore DM et al (2014) HIV-associated neurocognitive disorder in Australia: a case of a high-functioning and optimally treated cohort and implications for international neuroHIV research. J Neurovirol. 20(3):258–268CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Gott C, Gates T, Dermody N, Brew BJ, Cysique LA (2017) Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS One. 12(3):e0171887CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Pfefferbaum A, Zahr NM, Sassoon SA, Kwon D, Pohl KM, Sullivan EV (2018) Accelerated and premature aging characterizing regional cortical volume loss in human immunodeficiency virus infection: contributions from alcohol, substance use, and hepatitis C coinfection. Biol Psychiatry Cogn Neurosci Neuroimaging. 3(10):844–859CrossRefPubMedGoogle Scholar
  109. 109.
    Clifford KM, Samboju V, Cobigo Y, Milanini B, Marx GA, Hellmuth JM et al (2017) Progressive brain atrophy despite persistent viral suppression in HIV patients older than 60 years. J Acquir Immune Defic Syndr. 76(3):289–297CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Goodkin K, Miller EN, Cox C, Reynolds S, Becker JT, Martin E et al (2017) Effect of ageing on neurocognitive function by stage of HIV infection: evidence from the multicenter AIDS Cohort Study. Lancet HIV. 4(9):e411–e422CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Cole JH, Caan MWA, Underwood J, De Francesco D, van Zoest RA, Wit F et al (2018) No evidence for accelerated aging-related brain pathology in treated human immunodeficiency virus: longitudinal neuroimaging results from the comorbidity in relation to AIDS (COBRA) project. Clin Infect Dis 66(12):1899–1909CrossRefPubMedGoogle Scholar
  112. 112.
    Lundgren JD, Babiker AG, Gordin F, Emery S, Grund B, Sharma S et al (2015) Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med 373(9):795–807CrossRefPubMedGoogle Scholar
  113. 113.
    Avelino-Silva VI, Ho YL, Avelino-Silva TJ, Santos Sde S (2011) Aging and HIV infection. Ageing Res Rev. 10(1):163–172CrossRefPubMedGoogle Scholar
  114. 114.
    Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212(10):1563–1573CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Appay V, Sauce D (2008) Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol. 214(2):231–241CrossRefPubMedGoogle Scholar
  116. 116.
    Neuhaus J, Jacobs DR Jr, Baker JV, Calmy A, Duprez D, La Rosa A et al (2010) Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 201(12):1788–1795CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Burdo TH, Lo J, Abbara S, Wei J, DeLelys ME, Preffer F et al (2011) Soluble CD163, a novel marker of activated macrophages, is elevated and associated with noncalcified coronary plaque in HIV-infected patients. J Infect Dis. 204(8):1227–1236CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Appay V, Kelleher AD (2016) Immune activation and immune aging in HIV infection. Curr Opin HIV AIDS. 11(2):242–249CrossRefPubMedGoogle Scholar
  119. 119.
    Wikby A, Mansson IA, Johansson B, Strindhall J, Nilsson SE (2008) The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 9(5):299–308CrossRefPubMedGoogle Scholar
  120. 120.
    Duffau P, Wittkop L, Lazaro E, le Marec F, Cognet C, Blanco P et al (2015) Association of immune-activation and senescence markers with non-AIDS-defining comorbidities in HIV-suppressed patients. Aids. 29(16):2099–2108CrossRefPubMedGoogle Scholar
  121. 121.
    Petoumenos K, Choi JY, Hoy J, Kiertiburanakul S, Ng OT, Boyd M et al (2017) CD4:CD8 ratio comparison between cohorts of HIV-positive Asians and Caucasians upon commencement of antiretroviral therapy. Antivir Ther. 22(8):659–668CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Yap SH, Abdullah NK, McStea M, Takayama K, Chong ML, Crisci E et al (2017) HIV/Human herpesvirus co-infections: impact on tryptophan-kynurenine pathway and immune reconstitution. PLoS One. 12(10):e0186000CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Jevtic S, Sengar AS, Salter MW, McLaurin J (2017) The role of the immune system in Alzheimer disease: etiology and treatment. Ageing Res Rev. 40:84–94CrossRefPubMedGoogle Scholar
  124. 124.
    van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH et al (2018) Vascular cognitive impairment. Nat Rev Dis Primers. 4(18003):18003CrossRefPubMedGoogle Scholar
  125. 125.
    Brew BJ, Crowe SM, Landay A, Cysique LA, Guillemin G (2009) Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol. 4(2):163–174CrossRefPubMedGoogle Scholar
  126. 126.
    Schweinsburg BC, Taylor MJ, Alhassoon OM, Gonzalez R, Brown GG, Ellis RJ et al (2005) Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV +) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol. 11(4):356–364CrossRefPubMedGoogle Scholar
  127. 127.
    Apostolova N, Funes HA, Blas-Garcia A, Galindo MJ, Alvarez A, Esplugues JV (2015) Efavirenz and the CNS: what we already know and questions that need to be answered. J Antimicrob Chemother. 70(10):2693–2708CrossRefPubMedGoogle Scholar
  128. 128.
    Soontornniyomkij V, Umlauf A, Soontornniyomkij B, Gouaux B, Ellis RJ, Levine AJ et al (2018) Association of antiretroviral therapy with brain aging changes among HIV-infected adults. Aids. 32(14):2005–2015PubMedGoogle Scholar
  129. 129.
    Lucas GM, Ross MJ, Stock PG, Shlipak MG, Wyatt CM, Gupta SK et al (2014) Clinical practice guideline for the management of chronic kidney disease in patients infected with HIV: 2014 update by the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 59(9):e96–e138CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Althoff KN, McGinnis KA, Wyatt CM, Freiberg MS, Gilbert C, Oursler KK et al (2015) Comparison of risk and age at diagnosis of myocardial infarction, end-stage renal disease, and non-AIDS-defining cancer in HIV-infected versus uninfected adults. Clin Infect Dis. 60(4):627–638CrossRefPubMedGoogle Scholar
  131. 131.
    Yuen T, Brouillette MJ, Fellows LK, Ellis RJ, Letendre S, Heaton R et al (2017) personalized risk index for neurocognitive decline among people with well-controlled HIV infection. J Acquir Immune Defic Syndr. 76(1):48–54CrossRefPubMedGoogle Scholar
  132. 132.
    Liyanage SI, Santos C, Weaver DF (2018) The hidden variables problem in Alzheimer’s disease clinical trial design. Alzheimers Dement (NY). 4:628–635Google Scholar
  133. 133.
    Gates TM, Cysique LA, Siefried KJ, Chaganti J, Moffat KJ, Brew BJ (2016) Maraviroc-intensified combined antiretroviral therapy improves cognition in virally suppressed HIV-associated neurocognitive disorder. Aids. 30(4):591–600CrossRefPubMedGoogle Scholar
  134. 134.
    Kamminga J, Lal L, Wright EJ, Bloch M, Brew BJ, Cysique LA (2017) Monitoring HIV-associated neurocognitive disorder using screenings: a critical review including guidelines for clinical and research use. Curr HIV/AIDS Rep. 14(3):83–92CrossRefPubMedGoogle Scholar
  135. 135.
    Robbins RN, Gouse H, Brown HG, Ehlers A, Scott TM, Leu CS et al (2018) A mobile app to screen for neurocognitive impairment: preliminary validation of NeuroScreen among HIV-infected South African Adults. JMIR Mhealth Uhealth. 6(1):e5CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Molsberry SA, Lecci F, Kingsley L, Junker B, Reynolds S, Goodkin K et al (2015) Mixed membership trajectory models of cognitive impairment in the multicenter AIDS cohort study. Aids. 29(6):713–721CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Henry D, Tolan P, Gorman-Smith D, Schoeny M (2017) Alternatives to randomized control trial designs for community-based prevention evaluation. Prev Sci 18(6):671–680CrossRefPubMedGoogle Scholar
  138. 138.
    Guaraldi G, Palella FJ (2017) Clinical implications of aging with HIV infection: perspectives and the future medical care agenda. Aids 31(Suppl 2):S129–S135CrossRefPubMedGoogle Scholar
  139. 139.
    Rueda S, Law S, Rourke SB (2014) Psychosocial, mental health, and behavioral issues of aging with HIV. Curr Opin HIV AIDS 9(4):325–331CrossRefPubMedGoogle Scholar
  140. 140.
    Levin J. Aging of HIV-Infected: a explosive and underestimated phenomena being ignored, needs attention—special support services for patients & clinics needed-lack of federal/state response—HCV too—Commentary by Jules Levin. Community Perspectives: “A call to action: What should our research, care, education and social support priorities be?” http://www.natap.org/2017/HIV/040417_01.htm2018
  141. 141.
    Cummins D, Waters D, Aggar C, Crawford D, Fethney J, O’Connor C (2018) Voices from Australia-concerns about HIV associated neurocognitive disorder. AIDS Care 30(5):609–617CrossRefPubMedGoogle Scholar
  142. 142.
    Terpstra AR, Worthington C, Ibanez-Carrasco F, O’Brien KK, Yamamoto A, Chan Carusone S et al (2018) I’m Just Forgetting and I Don’t Know Why”: exploring how people living with HIV-associated neurocognitive disorder view, manage, and obtain support for their cognitive difficulties. Qual Health Res 28(6):859–872CrossRefPubMedGoogle Scholar

Copyright information

© European Geriatric Medicine Society 2019

Authors and Affiliations

  1. 1.Departments of Neurology and HIV MedicineSt Vincent’s Hospital and Peter Duncan Neurosciences Unit, St Vincent’s Centre for Applied Medical ResearchSydneyAustralia
  2. 2.Neuroscience Research AustraliaLifecourse Ageing Research Centre (LARC)SydneyAustralia
  3. 3.Faculty of MedicineUniversity of New South WalesSydneyAustralia

Personalised recommendations