Older HIV-infected adults: complex patients—comorbidity (I)

  • Rocío Montejano
  • Rosa de Miguel
  • José I. BernardinoEmail author
Special Article


Life expectancy in people living with HIV has increased in the past decades, since the introduction of highly active antiretroviral treatment. Increased survival comes along with new challenges for the HIV physician, as these patients will present comorbidities inherent to ageing that can appear more frequently and at younger age than the general population. The older HIV patient poses a unique challenge, as management should take into account different factors, some related to global ageing such as geriatric syndromes, traditional risk factors, social vulnerability, and age-related diseases, and others related to HIV infection like ART toxicity, drug–drug interactions, immune dysregulation and chronic inflammation. All the above can amount to great polypharmacy and multimorbidity that physician have to be aware of. Little is known about the best screening, management and treatment strategies to improve long-term health outcomes in this ageing population. The following article briefly reviews the main comorbidities that can affect the ageing HIV patient.


HIV Ageing Comorbidities Chronicity 



Rosa de Miguel is supported by a Río Hortega fellowship from the Fondo de Investigación Sanitaria.

Compliance with ethical standards

Conflict of interest

Dr. Bernardino reports grants and personal fees from Gilead Sciences, personal fees from ViiV Healthcare, Janssen Pharmaceuticals, and Merck Sharp & Dohme, outside the submitted work. Dr de Miguel reports personal fees from Gilead Sciences and Janssen Pharma outside the submitted work. Dr Montejano received personal fees from Janssen Pharmaceuticals, personal fees from Merck Sharp & Dohme, and Gilead Sciences outside the submitted work.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.


  1. 1.
    Lohse N, Hansen A-BE, Pedersen G, Kronborg G, Gerstoft J, Sørensen HT, Vaeth M, Obel N (2007) Survival of persons with and without HIV infection in Denmark, 1995–2005. Ann Intern Med 146:87–95PubMedCrossRefGoogle Scholar
  2. 2.
    May MT, Gompels M, Delpech V et al (2014) Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. AIDS 28:1193–1202PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Smit M, Brinkman K, Geerlings S, Smit C, Thyagarajan K, Sighem AV, de Wolf F, Hallett TB, ATHENA observational cohort (2015) Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 15:810–818PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    HIV/AIDS surveillance in Europe 2017–2016 data (2017) pp 1–124. Accessed 3 Nov 2018
  5. 5.
    Sobrino-Vegas P, Moreno S, Rubio R et al (2016) Impact of late presentation of HIV infection on short-, mid- and long-term mortality and causes of death in a multicenter national cohort: 2004–2013. J Infect 72:587–596PubMedCrossRefGoogle Scholar
  6. 6.
    Collaboration of Observational HIV Epidemiological Research Europe (COHERE) Study Group, Sabin CA, Smith CJ et al (2008) Response to combination antiretroviral therapy: variation by age. AIDS 22:1463–1473CrossRefGoogle Scholar
  7. 7.
    Deeks SG, Lewin SR, Havlir DV (2013) The end of AIDS: HIV infection as a chronic disease. Lancet 382:1525–1533PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Schouten J, Wit FW, Stolte IG, Kootstra NA, van der Valk M, Geerlings SE, Prins M, Reiss P, AGEhIV Cohort Study Group (2014) Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clin Infect Dis 59:1787–1797PubMedCrossRefGoogle Scholar
  9. 9.
    Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, Bertisch B, Bernasconi E, Weber R, Swiss HIV Cohort Study (2011) Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clinical Infectious Diseases 53:1130–1139PubMedCrossRefGoogle Scholar
  10. 10.
    Wong C, Gange SJ, Moore RD et al (2018) Multimorbidity among persons living with human immunodeficiency virus in the United States. Clin Infect Dis 66:1230–1238PubMedCrossRefGoogle Scholar
  11. 11.
    Pelchen-Matthews A, Ryom L, Borges ÁH et al (2018) Aging and the evolution of comorbidities among HIV-positive individuals in a European cohort. AIDS 32:2405–2416PubMedGoogle Scholar
  12. 12.
    Grund B, Baker JV, Deeks SG et al (2016) Relevance of interleukin-6 and d-dimer for serious non-AIDS morbidity and death among HIV-positive adults on suppressive antiretroviral therapy. PLoS One 11:e0155100PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Tenorio AR, Zheng Y, Bosch RJ et al (2014) Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. J Infect Dis 210:1248–1259PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wikby A, Nilsson B-O, Forsey R, Thompson J, Strindhall J, Löfgren S, Ernerudh J, Pawelec G, Ferguson F, Johansson B (2006) The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127:695–704PubMedCrossRefGoogle Scholar
  15. 15.
    Gross AM, Jaeger PA, Kreisberg JF et al (2016) Methylome-wide analysis of chronic HIV infection reveals five-year increase in biological age and epigenetic targeting of HLA. Mol Cell 62:157–168PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rickabaugh TM, Baxter RM, Sehl M et al (2015) Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One 10:e0119201PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Monge S, Alejos B, Dronda F et al (2013) Inequalities in HIV disease management and progression in migrants from Latin America and sub-Saharan Africa living in Spain. HIV Medicine 14:273–283PubMedCrossRefGoogle Scholar
  18. 18.
    Triant VA, Lee H, Hadigan C, Grinspoon SK (2007) Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab 92:2506–2512PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Levy ME, Greenberg AE, Hart R, Powers Happ L, Hadigan C, Castel A, DC Cohort Executive Committee (2017) High burden of metabolic comorbidities in a citywide cohort of HIV outpatients: evolving health care needs of people aging with HIV in Washington, DC. HIV Medicine 18:724–735PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Allavena C, Hanf M, Rey D et al (2018) Antiretroviral exposure and comorbidities in an aging HIV-infected population: the challenge of geriatric patients. PLoS One 13:e0203895PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xu Y, Chen X, Wang K (2017) Global prevalence of hypertension among people living with HIV: a systematic review and meta-analysis. J Am Soc Hypertens 11:530–540PubMedCrossRefGoogle Scholar
  22. 22.
    Nduka CU, Stranges S, Sarki AM, Kimani PK, Uthman OA (2016) Evidence of increased blood pressure and hypertension risk among people living with HIV on antiretroviral therapy: a systematic review with meta-analysis. J Hum Hypertens 30:355–362PubMedCrossRefGoogle Scholar
  23. 23.
    Hatleberg CI, Ryom L, d’Arminio Monforte A et al (2018) Association between exposure to antiretroviral drugs and the incidence of hypertension in HIV-positive persons: the data collection on adverse events of anti-HIV drugs (D:A:D) study. HIV Med 19:605–618PubMedCrossRefGoogle Scholar
  24. 24.
    van Zoest RA, van den Born B-JH, Reiss P (2017) Hypertension in people living with HIV. Curr Opin HIV AIDS 12:513–522PubMedCrossRefGoogle Scholar
  25. 25.
    Okeke NL, Davy T, Eron JJ, Napravnik S (2016) Hypertension among HIV-infected patients in clinical care, 1996–2013. Clin Infect Dis 63:242–248PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    European AIDS Clinical Society Guidelines (2018) Version 9.1 Octubre 2018. 1–104. Accessed 3 Nov 2018
  27. 27.
    Kaiser EA, Lotze U, Schäfer HH (2014) Increasing complexity: which drug class to choose for treatment of hypertension in the elderly? Clin Interv Aging 9:459–475PubMedPubMedCentralGoogle Scholar
  28. 28.
    Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/American heart association task force on clinical practice guidelines. Circulation 138:e426–e483PubMedGoogle Scholar
  29. 29.
    Williams B, Mancia G, Spiering W et al (2018) 2018 practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC task force for the management of arterial hypertension. J Hypertens 36:2284–2309PubMedCrossRefGoogle Scholar
  30. 30.
    Shahmanesh M, Schultze A, Burns F et al (2016) The cardiovascular risk management for people living with HIV in Europe: how well are we doing? AIDS 30:2505–2518PubMedCrossRefGoogle Scholar
  31. 31.
    Smit M, van Zoest RA, Nichols BE et al (2018) Cardiovascular disease prevention policy in human immunodeficiency virus: recommendations from a modeling study. Clin Infect Dis 66:743–750PubMedCrossRefGoogle Scholar
  32. 32.
    Calvo M, Martinez E (2014) Update on metabolic issues in HIV patients. Curr Opin HIV AIDS 9:332–339PubMedCrossRefGoogle Scholar
  33. 33.
    Maggi P, Di Biagio A, Rusconi S et al (2017) Cardiovascular risk and dyslipidemia among persons living with HIV: a review. BMC Infect Dis 17:551PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu H-H, Li J-J (2015) Aging and dyslipidemia: a review of potential mechanisms. Ageing Res Rev 19:43–52PubMedCrossRefGoogle Scholar
  35. 35.
    Katsiki N, Kolovou G, Perez-Martinez P, Mikhailidis DP (2018) Dyslipidaemia in the elderly: to treat or not to treat? Expert Rev Clin Pharmacol 11:259–278PubMedCrossRefGoogle Scholar
  36. 36.
    Banach M, Dinca M, Ursoniu S et al (2016) A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials investigating the effects of statin therapy on plasma lipid concentrations in HIV-infected patients. Pharmacol Res 111:343–356PubMedCrossRefGoogle Scholar
  37. 37.
    Catapano AL, Graham I, De Backer G et al (2016) 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058CrossRefGoogle Scholar
  38. 38.
    Ladapo JA, Richards AK, DeWitt CM, Harawa NT, Shoptaw S, Cunningham WE, Mafi JN (2017) Disparities in the quality of cardiovascular care between HIV-infected versus hiv-uninfected adults in the United States: a cross-sectional study. J Am Heart Assoc. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gurwitz JH, Go AS, Fortmann SP (2016) Statins for primary prevention in older adults: uncertainty and the need for more evidence. JAMA 316:1971–1972PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bellosta S, Corsini A (2018) Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf 17:25–37PubMedCrossRefGoogle Scholar
  41. 41.
    Eckard AR, McComsey GA (2015) The role of statins in the setting of HIV infection. Curr HIV/AIDS Rep 12:305–312PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hernandez-Romieu AC, Garg S, Rosenberg ES, Thompson-Paul AM, Skarbinski J (2017) Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009-2010. BMJ Open Diab Res Care 5:e000304PubMedCrossRefGoogle Scholar
  43. 43.
    Samad F, Harris M, Puskas CM, Ye M, Chia J, Chacko S, Bondy GP, Lima VD, Montaner JS, Guillemi SA (2017) Incidence of diabetes mellitus and factors associated with its development in HIV-positive patients over the age of 50. BMJ Open Diab Res Care 5:e000457PubMedCrossRefGoogle Scholar
  44. 44.
    Herrin M, Tate JP, Akgün KM et al (2016) Weight gain and incident diabetes among HIV-infected veterans initiating antiretroviral therapy compared with uninfected individuals. J Acquir Immune Defic Syndr 73:228–236PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nansseu JR, Bigna JJ, Kaze AD, Noubiap JJ (2018) Incidence and risk factors for prediabetes and diabetes mellitus among HIV-infected adults on antiretroviral therapy: a systematic review and meta-analysis. Epidemiology 29:431–441PubMedCrossRefGoogle Scholar
  46. 46.
    Norwood J, Turner M, Bofill C et al (2017) Brief report: weight gain in persons with HIV switched from efavirenz-based to integrase strand transfer inhibitor-based regimens. J Acquir Immune Defic Syndr 76:527–531PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rodger AJ, Lodwick R, Schechter M et al (2013) Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS 27:973–979PubMedCrossRefGoogle Scholar
  48. 48.
    Freiberg MS, Chang C-CH, Kuller LH et al (2013) HIV infection and the risk of acute myocardial infarction. JAMA Intern Med 173:614–622PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA (2012) Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr 60:351–358PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Beckman JA, Duncan MS, Alcorn CW et al (2018) Association of human immunodeficiency virus infection and risk of peripheral artery disease. Circulation 138:255–265PubMedCrossRefGoogle Scholar
  51. 51.
    Tseng ZH, Secemsky EA, Dowdy D, Vittinghoff E, Moyers B, Wong JK, Havlir DV, Hsue PY (2012) Sudden cardiac death in patients with human immunodeficiency virus infection. J Am Coll Cardiol 59:1891–1896PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Freiberg MS, Chang C-CH, Skanderson M et al (2017) Association between HIV infection and the risk of heart failure with reduced ejection fraction and preserved ejection fraction in the antiretroviral therapy era: results from the veterans aging cohort study. JAMA Cardiol 2:536–546PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Shah ASV, Stelzle D, Lee KK et al (2018) Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation 138:1100–1112PubMedCrossRefGoogle Scholar
  54. 54.
    DAD Study Group, Sabin CA, Worm SW et al (2008) Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A: D study: a multi-cohort collaboration. Lancet 371:1417–1426CrossRefGoogle Scholar
  55. 55.
    Ryom L, Lundgren JD, El-Sadr W et al (2018) Cardiovascular disease and use of contemporary protease inhibitors: the D:A: D international prospective multicohort study. Lancet HIV 5:e291–e300PubMedCrossRefGoogle Scholar
  56. 56.
    Alvi RM, Neilan AM, Tariq N et al (2018) Protease inhibitors and cardiovascular outcomes in patients with HIV and heart failure. J Am Coll Cardiol 72:518–530PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rasmussen LD, Helleberg M, May MT, Afzal S, Kronborg G, Larsen CS, Pedersen C, Gerstoft J, Nordestgaard BG, Obel N (2015) Myocardial infarction among Danish HIV-infected individuals: population-attributable fractions associated with smoking. Clin Infect Dis 10:1–9Google Scholar
  58. 58.
    De Socio GV, Ricci E, Parruti G et al (2016) Statins and aspirin use in HIV-infected people: gap between European AIDS Clinical Society guidelines and clinical practice: the results from HIV-HY study. Infection 44:589–597PubMedCrossRefGoogle Scholar
  59. 59.
    Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, Berti A, Rossi E, Roverato A, Palella F (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53:1120–1126CrossRefGoogle Scholar
  60. 60.
    Yombi JC, Pozniak A, Boffito M, Jones R, Khoo S, Levy J, Post FA (2014) Antiretrovirals and the kidney in current clinical practice: renal pharmacokinetics, alterations of renal function and renal toxicity. AIDS 28:621–632PubMedCrossRefGoogle Scholar
  61. 61.
    Nixon AC, Bampouras TM, Pendleton N, Woywodt A, Mitra S, Dhaygude A (2018) Frailty and chronic kidney disease: current evidence and continuing uncertainties. Clin Kidney J 11:236–245PubMedCrossRefGoogle Scholar
  62. 62.
    Ryom L, Mocroft A, Kirk O et al (2017) Predictors of estimated glomerular filtration rate progression, stabilization or improvement after chronic renal impairment in HIV-positive individuals. AIDS 31:1261–1270PubMedCrossRefGoogle Scholar
  63. 63.
    Mallon PWG (2014) Aging with HIV: osteoporosis and fractures. Curr Opin HIV AIDS 9:428–435PubMedCrossRefGoogle Scholar
  64. 64.
    Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20:2165–2174PubMedCrossRefGoogle Scholar
  65. 65.
    Battalora LA, Young B, Overton ET (2014) Bones, fractures, antiretroviral therapy and HIV. Curr Infect Dis Rep 16:393–396PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Grijsen ML, Vrouenraets SME, Steingrover R, Lips P, Reiss P, Wit FWNM, Prins JM (2010) High prevalence of reduced bone mineral density in primary HIV-1-infected men. AIDS 24:2233–2238PubMedCrossRefGoogle Scholar
  67. 67.
    van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, Sutinen J, Ristola M, Danner SA, Reiss P (2009) First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS 23:1367–1376PubMedCrossRefGoogle Scholar
  68. 68.
    Dolan SE, Carpenter S, Grinspoon S (2007) Effects of weight, body composition, and testosterone on bone mineral density in HIV-infected women. JAIDS J Acquir Immune Defic Syndr 45:161–167PubMedCrossRefGoogle Scholar
  69. 69.
    Yin MT, Shane E (2006) Low bone-mineral density in patients with HIV: pathogenesis and clinical significance. Curr Opin Endocrinol Diabetes 13:497–502PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Grund B, Peng G, Gibert CL, Hoy JF, Isaksson RL, Shlay JC, Martinez E, Reiss P, Visnegarwala F, Carr AD (2009) Continuous antiretroviral therapy decreases bone mineral density. AIDS 23:1519–1529PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Carr A, Grund B, Neuhaus J et al (2015) Prevalence of and risk factors for low bone mineral density in untreated HIV infection: a substudy of the INSIGHT strategic timing of antiretroviral treatment (START) trial. HIV Med 16(Suppl 1):137–146PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hoy JF, Grund B, Roediger M et al (2017) Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the START bone mineral density substudy, a randomized trial. J Bone Miner Res 32:1945–1955PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, Myers L, Melbourne K, Ha B, Sax PE (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203:1791–1801PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Stellbrink H-J, Orkin C, Arribas JR et al (2010) Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 51:963–972PubMedCrossRefGoogle Scholar
  75. 75.
    Cotter AG, Vrouenraets SME, Brady JJ, Wit FW, Fux CA, Furrer H, Brinkman K, Sabin CA, Reiss P, Mallon PWG (2013) Impact of switching from zidovudine to tenofovir disoproxil fumarate on bone mineral density and markers of bone metabolism in virologically suppressed HIV-1 infected patients; a substudy of the PREPARE study. J Clin Endocrinol Metab 98:1659–1666PubMedCrossRefGoogle Scholar
  76. 76.
    Bernardino JI, Mocroft A, Mallon PW et al (2015) Bone mineral density and inflammatory and bone biomarkers after darunavir-ritonavir combined with either raltegravir or tenofovir-emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV 2:e464–e473PubMedCrossRefGoogle Scholar
  77. 77.
    Sax PE, Wohl D, Yin MT et al (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet 385:2606–2615PubMedCrossRefGoogle Scholar
  78. 78.
    Young B, Dao CN, Buchacz K, Baker R, Brooks JT, the HIV Outpatient Study (HOPS) Investigators (2011) Increased Rates of Bone Fracture Among HIV-Infected Persons in the HIV Outpatient Study (HOPS) Compared With the US General Population, 2000-2006. Clin Infect Dis 52:1061–1068PubMedCrossRefGoogle Scholar
  79. 79.
    Grant PM, Kitch D, McComsey GA et al (2013) Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis 57:1483–1488PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P (2012) Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS 26:825–831PubMedCrossRefGoogle Scholar
  81. 81.
    Güerri-Fernandez R, Vestergaard P, Carbonell C, Knobel H, Avilés FF, Castro AS, Nogués X, Prieto-Alhambra D, Diez-Perez A (2013) HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study. J Bone Miner Res 28:1259–1263PubMedCrossRefGoogle Scholar
  82. 82.
    Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large US healthcare system. J Clin Endocrinol Metab 93:3499–3504PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Borges ÁH, Hoy J, Florence E et al (2017) Antiretrovirals, fractures, and osteonecrosis in a large international HIV cohort. Clin Infect Dis 64:1413–1421PubMedCrossRefGoogle Scholar
  84. 84.
    Silverberg MJ, Lau B, Achenbach CJ et al (2015) Cumulative incidence of cancer among persons with HIV in North America: a cohort study. Ann Intern Med 163:507–518PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Robbins HA, Shiels MS, Pfeiffer RM, Engels EA (2014) Epidemiologic contributions to recent cancer trends among HIV-infected people in the United States. AIDS 28:881–890PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Yanik EL, Katki HA, Engels EA (2016) Cancer risk among the HIV-infected elderly in the United States. AIDS 30:1663–1668PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA (2015) Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Shiels MS, Cole SR, Kirk GD, Poole C (2009) A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr 52:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Silverberg MJ, Chao C, Leyden WA, Xu L, Tang B, Horberg MA, Klein D, Quesenberry CP, Towner WJ, Abrams DI (2009) HIV infection and the risk of cancers with and without a known infectious cause. AIDS 23:2337–2345PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Reekie J, Kosa C, Engsig F et al (2010) Relationship between current level of immunodeficiency and non-acquired immunodeficiency syndrome-defining malignancies. Cancer 116:5306–5315PubMedCrossRefGoogle Scholar
  92. 92.
    Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA (2017) Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV 4:e495–e504PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Shiels MS, Islam JY, Rosenberg PS, Hall HI, Jacobson E, Engels EA (2018) Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the united states through 2030. Ann Intern Med 168:866–873PubMedCrossRefGoogle Scholar
  94. 94.
    Helleberg M, May MT, Ingle SM et al (2015) Smoking and life expectancy among HIV-infected individuals on antiretroviral therapy in Europe and North America. AIDS 29:221–229PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© European Geriatric Medicine Society 2019

Authors and Affiliations

  1. 1.HIV Unit, Department of Internal Medicine, Edificio Consultas Externas. Planta SemisótanoHospital Universitario La Paz, IdiPAZMadridSpain

Personalised recommendations