Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Organocatalyzed styrene epoxidation accelerated by continuous-flow reactor

  • 27 Accesses


Considering the low conversion and long reaction time in scaling up reaction in batch reactor, the organocatalyzed epoxidation reaction of styrene was intensified under continuous flow conditions using a commercial fluidic reactor (Corning Advanced Flow G1 Reactor). After investigating the effect of reaction temperature, catalyst amount, MeCN/t-BuOH ratio, FO/FAB (buffer solution amount), total feed flow rate and operating mode on the epoxidation reaction, the optimal reaction conditions were identified under continuous flow conditions. Upon optimization, high conversion and excellent selectivity with short reaction time (3.17 min) can be obtained. We successfully developed a process for the rapid and continuous epoxidation of styrene using an organocatalyst with hydrogen peroxide as the oxidant. Compared with the batch conditions, the continuous flow reactor can exhibit unique advantages including high-speed, safety, continuousness and absence of amplifying effect, which will be significant for the industrial production of epoxides.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    McGarrigle EM, Gilheany DG (2005). Chem Rev 105:1563–1602

  2. 2.

    Davis RL, Stiller J, Naicker T, Jiang H, Jorgensen KA (2014). Angew Chem Int Ed 53:7406–7426

  3. 3.

    Mizuno N, Yamaguchi K, Kamata K (2005). Coord Chem Rev 249:1944–1956

  4. 4.

    Tyablikov I, Romanovsky B (2016). Catal Today 278:40–44

  5. 5.

    Liu JY, Ru MG, Li JX, Jian PM, Wang LX, Jian RQ (2019). Appl Catal B 254:214–222

  6. 6.

    Han QX, Qi B, Ren WM, He C, Niu JY, Duan CY (2015). Nat Commun 6:10007

  7. 7.

    White MC, Doyle AG, Jacobsen EN (2001). Am Chem Soc 123:7194–7195

  8. 8.

    Limnios D, Kokotos CG (2014). J Organomet Chem 79:4270–4276

  9. 9.

    Lane BS, Burgess K (2003). Chem Rev 103:2457–2473

  10. 10.

    Triandafillidi I, Tzaras DI, Kokotos CG (2018). ChemCatChem. 10:2521–2535

  11. 11.

    Shu LH, Shi Y (2000). J Organomet Chem 65:8807–8810

  12. 12.

    Lifchits O, Reisinger CM, List BJ (2010). J Am Chem Soc 132:10227–10229

  13. 13.

    Berkessel A, Kramer J, Mummy F, Neudorfl JM, Haag R (2013). Angew Chem Int Ed 452:739–743

  14. 14.

    Adam W, Saha-Möller CR, Ganespure PA (2001). Chem Rev 101:3499–3548

  15. 15.

    Neimann K, Neumann R (2001). Chem Commun 487−488

  16. 16.

    Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noel T (2016). Chem Soc Rev 45:83–117

  17. 17.

    Gutmann B, Cantillo D, Kappe CO (2015). Angew Chem Int Ed 54:6688–6728

  18. 18.

    Woitalka A, Kuhn S, Jensen KF (2014). Chem Eng Sci 116:1–8

  19. 19.

    Salmi T, Carucci JH, Roche M, Eranen K, Warna J, Murzin D (2013). Chem Eng Sci 87:306–314

  20. 20.

    Ying Y, Chen G, Zhao Y, Si L, Yuan Q (2008) Chem. Eng Sci 135:209–215

  21. 21.

    Britton J, Raston CL (2017). Chem Soc Rev 46:1250–1271

  22. 22.

    Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2013). Ind Eng Chem Res 52:8996–9010

  23. 23.

    Calabrese GS, Pissavini S (2011). AICHE J 57:828–834

  24. 24.

    Wojtowicz-Mlochowska H (2017). Arch Org Chem 2:12–58

  25. 25.

    Triandafillidi I, Kokotos CG (2017). Org Lett 19:106–109

  26. 26.

    Voutyritsa E, Triandafillidi I, Kokotos CG (2017). Synthesis. 49:917–924

  27. 27.

    Theodorou A, Kokotos CG (2017). Green Chem 19:670–674

  28. 28.

    Theodorou A, Kokotos CG (2017). Adv Synth Catal 359:1577–1581

  29. 29.

    Triandafillidi I, Raftopoulou M, Savvidou A, Kokotos CG (2017). ChemCatChem. 9:4120–4124

  30. 30.

    Haas TW (1960). Retrospective Theses and Dissertations:2645

  31. 31.

    Shang MJ, Noël T, Su YH, Hessel V (2017). AICHE J 63:689–697

  32. 32.

    van der Waal JC, van Bekkum H (1997). J Mol Catal A 124:137–146

  33. 33.

    Payne GB, Deming PH, Williams PH (1961). J Organomet Chem 26:659–663

  34. 34.

    Page PCB, Graham AE, Bethell D, Park BK (1993). Synth Commun 23:1507–1514

  35. 35.

    Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K (1999). New J Chem 23:799–801

  36. 36.

    Zhang Y, Born SC, Jensen KF (2014). Org Process Res Dev 18:1476–1481

  37. 37.

    Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2013). Ind Eng Chem Res 52:8996–9010

  38. 38.

    Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2012). Ind Eng Chem Res 51:16251–16262

Download references


Project was supported by the National Natural Science Foundation of China (21476049), the Regional Development Project of Fujian Province (2016H4023), the University-Industry Cooperation Project of Fujian Province (2019H6010), the Industrial Technology Joint Innovation Special Project of Fujian Province (FG-2016005) and the Program for New Century Excellent Talents in University of Fujian Province (HG2017-17).

Author information

Correspondence to Hui-Dong Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research highlights:

1. Continuous-flow conditions were developed and optimized for the epoxidation of styrene.

2. High conversion and excellent selectivity can be obtained under continuous flow conditions.

3. Unique advantages including short reaction time (3.17 min), safety, continuousness and absence of amplifying effect will beneficial for the industrial production of epoxides.

Electronic supplementary material


(DOCX 3399 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Zhou, S., Jiang, Y. et al. Organocatalyzed styrene epoxidation accelerated by continuous-flow reactor. J Flow Chem (2020).

Download citation


  • Styrene
  • Epoxidation
  • Organocatalyst
  • Continuous synthesis