Journal of Flow Chemistry

, Volume 9, Issue 2, pp 89–100 | Cite as

Metallorganic reactions in the polytropic microreactors

  • Min Fu
  • Leslaw MleczkoEmail author


High exothermicity, unstable intermediates, high reaction rates are the features that make metallorganic reactions very challenging, especially in commercial operation. No wonder that there is a large interest for the alternative production technology. This paper reviews a research program by Bayer on metallorganic reactions in microreactors. Selected aspects of use of micro-reaction technology for this reaction class are discussed. Two operational issues, i.e. temperature control and clogging are highlighted. Furthermore, the design concept of a MRT based commercial unit and its economics are discussed.


Metallorganic reaction Polytropic microreactor Temperature control Clogging Commercial unit 



In this paper we summarized results obtained over the long time by a large team of colleagues. We can’t name them all but we would like to thank explicitly Dres S. Peper who analyzed the solubility of Li-salts, T. Westermann who studied temperature control and Shizhe Tian who dealt with economic evaluation.


  1. 1.
    Wolf A, Michele V, Schlüter OF-K, Herbstritt F, Heck J, Mleczko L (2015). Chem Eng Technol 38(11):2017–2024CrossRefGoogle Scholar
  2. 2.
    Fu M, Luan W, Tu S-T, Mleczko L (2015) J Nanomater 842365/1–842365/9Google Scholar
  3. 3.
    Lu H, Hoheisel W, Mleczko L, Nowak S Continuous synthesis of high quantum yield InP/ZnS nanocrystals. (2014) EP2785897A1, Oct.Google Scholar
  4. 4.
    Henig M (2011) Process, 2011. Accessed 10/20/2010
  5. 5.
    Buchholz S, Mleczko L (2008). VDI-Ber 2039:177–181Google Scholar
  6. 6.
    Ji G, Ding C, Zhang G, Ji S, Ji G, Ji X, Yang H (2014) Method utilizing micro-channel to prepare tris(2-chloroethyl)phosphite. CN104119374A, OctGoogle Scholar
  7. 7.
    Mleczko L, Zhao D (2015) Technology for Continuous Production of Fine Chemicals, A Case Study for Low Temperature Lithiation Reactions. In: Managing Hazardous Reactions and Compounds in Process Chemistry; Pesti, J. A., Abdel-Magid, A. F. (Eds). American Chemical Society: Washington, DCGoogle Scholar
  8. 8.
    Tian S, Fu M, Hoheisel W, Mleczko L (2016). Chem Eng J 289:365–373CrossRefGoogle Scholar
  9. 9.
    Thaisrivongs DA, Naber JR, McMullen JP (2016). Org Process Res Dev 20:1997–2004CrossRefGoogle Scholar
  10. 10.
    Murray PRD, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV (2013). Org Process Res Dev 17:1192–1108CrossRefGoogle Scholar
  11. 11.
    Yoshida J (2009) Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley:New York,Google Scholar
  12. 12.
    Kim H, Min K-I, Inoue K, Im DJ, Kim D-P, Yoshida J-i (2016). Science 352:691–694CrossRefGoogle Scholar
  13. 13.
    Yoshida J-i, Takahashi Y, Nagaki A (2013). Chem Commun 49:9896–9904CrossRefGoogle Scholar
  14. 14.
    Nagaki A, Ichinari D, Yoshida J-i (2014). J Am Chem Soc 136(35):12245–12448CrossRefGoogle Scholar
  15. 15.
    Hafner A, Meisenbach M, Sedelmeier J (2016). Org Lett 18(15):3630–3633CrossRefGoogle Scholar
  16. 16.
    Hafner A, Filipponi P, Piccioni L, Meisenbach M, Schenkel B, Venturoni F, Sedelmeier J (2016). Org Process Res Dev 20:1833–1837CrossRefGoogle Scholar
  17. 17.
    Laue S, Haverkamp V, Mleczko L (2016). Org Process Res Dev 20:480–486CrossRefGoogle Scholar
  18. 18.
    Xie D, Zhou J, Tian S, Mleczko L, Zhou X (2016). Chem Eng Technol 39(8):1451–1456CrossRefGoogle Scholar
  19. 19.
    Laue S, Haverkamp V, Frye M, Michele V, Mleczko L (2007) Process for continuously preparing difluorobenzene derivatives with long operating times. WO2007054213A1, MayGoogle Scholar
  20. 20.
    Liu T, Yu F (2010) Continuous reacting device and method for strong exothermic reaction. CN101757881A, JuneGoogle Scholar
  21. 21.
    Westermann T, Mleczko L (2016). Org Process Res Dev 20(2):487–494CrossRefGoogle Scholar
  22. 22.
    Harrington PJ (2011) Pharmaceutical process chemistry for synthesis: rethinking the routes to scale-up. Wiley: New York, pp 304–305Google Scholar
  23. 23.
    Oppenheimer J Methods of isolating 4-chloro-2-fluoro-3-substituted-phenylboronic acids. (2014) US8822730B2, SepGoogle Scholar
  24. 24.
    Hessel V, Kralisch D, Kockmann N (2015) Novel process windows. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Nogaki A, Yoshida J-I (2014) In: Luisi R, Capriati V (eds) Lithium compounds in organic synthesis: from fundamentals to applications. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Hunter SM, Susanne F, Whitten R, Hartwig T, Schilling M (2018). Tetrahedron 74:3176–3182CrossRefGoogle Scholar
  27. 27.
    Haber J, Jiang B, Maeder T, Borhani N, Thome J, Renken A, Kiwi-Minskera L (2014). Chem Eng Process Process Intensif 84:14–23CrossRefGoogle Scholar
  28. 28.
    Hartman RL (2012). Org Process Res Dev 16(5):870–887CrossRefGoogle Scholar
  29. 29.
    Flowers BS, Hartman RL (2012). Challenges 3(2):194–211CrossRefGoogle Scholar
  30. 30.
    Hartman RL, Naber JR, Zaborenko N (2010). Org Process Res Dev 14(6):1347–1357CrossRefGoogle Scholar
  31. 31.
    Stubblefield CB, Bach RO (1972). J Chem Eng Data 17(4):491–492CrossRefGoogle Scholar
  32. 32.
    Wynn DA, Roth MM, Pollard BD (1984). Talanta 31(11):1036–1040CrossRefGoogle Scholar
  33. 33.
    Jennifer J (2010) PhD thesis, Universite Francois-Rabelais de ToursGoogle Scholar
  34. 34.
    Jensen KF (2017). AICHE J 63(3):858–869CrossRefGoogle Scholar
  35. 35.
    Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013). Org Process Res Dev 17:1472–1478CrossRefGoogle Scholar
  36. 36.
    Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005). Chem Eng Technol 28(3):318–323CrossRefGoogle Scholar
  37. 37.
    Roberge DM, Zimmermann B, Rainone F, Gottsponer M, Eyholzer M, Kockmann N (2008). Org Process Res Dev 12:905–910CrossRefGoogle Scholar
  38. 38.
    Krtschila U, Hessel V, Kralischd D, Kreiseld G, Küpperb M, Schenkb R (2006). Chimia 60:611–617CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 2019

Authors and Affiliations

  1. 1.Process Technology & Scouting, Engineering and TechnologyBayer (China) Ltd.ShanghaiChina
  2. 2.Division of Process Technology Development, Engineering and TechnologyBayer GmbHLeverkusenGermany

Personalised recommendations