Advertisement

Journal of Flow Chemistry

, Volume 9, Issue 1, pp 59–71 | Cite as

Mathematical modeling of the electrochemical degradation of 2-chlorophenol using an electrochemical flow reactor equipped with BDD electrodes

  • Alejandro Regalado-MéndezEmail author
  • Abril Cruz-López
  • Juan Mentado-Morales
  • Mario E. Cordero
  • Luis G. Zárate
  • Martín R. Cruz-Díaz
  • Gianpaolo Fontana
  • Ever Peralta-ReyesEmail author
Full Paper
  • 77 Downloads

Abstract

The objective of this work was to develop a mathematical model of an electrochemical flow reactor for the degradation of 2-chlorophenol. The reactor operates in batch recirculation and undivided mode under mass transport control and under galvanostatic conditions. The mathematical model proposed here was simulated on COMSOL Multiphysic® 5.3 software (involving the continuity and Navier-Stokes equation in a laminar regime, and the diffusion-convection equation with reaction term) interacting with the MATLAB® version R 2017a software (continuous stirred tank). The electrolysis process was carried out at a current density of 0.14 A m−2, a liquid flow rate of 1 L min−1 and pH = 7.3. The main results show that the mathematical model proposed here is in a very good agreement with the experimental study (correlation coefficient of 0.9917 and a reduced root-mean-square error of 0.4041). The final concentration of 2-chlorophenol estimated by the mathematical model was 0.0013 mol m−3, while the experimental concentration reached was 0.0001 mol m−3, confirming the predictive capacity of the mathematical model, as well as the efficiency of the electrochemical process implemented.

Graphical abstract

Keywords

BDD electrodes Electrochemical flow reactor 2-chlorophenol degradation Mathematical modeling 

Abbreviations

u

Liquid flow velocity, m s−1

\( {D}_H=\frac{4{A}_{Cross}}{P_{Wet}} \)

Equivalent hydraulic diameter of the rectangular flow channel, m

ACross = Wch × (Sch − Se)

Area of cross section, m2

PWet = 2Wch + 2(Sch − Se)

Wet perimeter, m

Wch

Channel width, m

Sch

Channel thickness, m

Se

Electrode thickness, m

VT

Tank volume, L

Q

Liquid flow rate, L min−1

j

Current density, A cm2

C2 −  CPh

Concentration of 2-chlorophenol, mol m−3

C2 −  CPh, 0

Initial concentration of 2-chlorophenol, mol m−3

\( {C}_{2- CPh}^{\mathrm{exp}} \)

2-CPh concentrations of experiment, mol m−3

\( {C}_{2- CPh}^{theor} \)

2-CPh concentrations of theoretical model, mol m−3

pH

Logarithmic scale of acidity or basicity, dimensionless

•OH

Hydroxyl radical

pKa

Negative base-10 logarithm of the acid dissociation constant

\( {K}_{ow}^a \)

Octanol–water partition coefficient, dimensionless

k

Apparent first-order reaction rate constant, h−1

-ri

Reaction rate model, mol m−3 h−1

C0

Outlet concentration of the 2-CPh from tank that feeds the reactor, mol m−3

t

Time, h

Di

Diffusion coefficient, m2 s−1

P

Pressure, Pa

Pinit

Initial pressure, Pa

Phydro

Hydrodynamic pressure, Pa

Ι

Unit momentum vector, dimensionless

F

Volume force, N m−3

\( \tilde{n} \)

Unit normal vector, dimensionless

g

Gravity acceleration constant, m s−2

n

Number of data points

Ni

Molar flux, mol h−1 m−2

R2

Correlation coefficient

Greek

ν

Kinematic viscosity of the fluid, m2 s−1

ρ

Density of the fluid, kg L−1

μ

Dynamic viscosity of the fluid, kg m−1 s−1

Gradient

Dimensionless groups

\( \operatorname{Re}=\frac{u{D}_H}{\nu } \)

Reynolds number, dimensionless

Acronyms

UHPLC

Ultrahigh-performance liquid chromatography

BDD

Boron-doped diamond

2-CPh

2-chlorophenol

DSA

Dimensionally stable anode

RTD

Residence time distribution

CST

Continuous stirred tank

RMSE

Reduced root-mean-square error

CFD

Computational fluid dynamics

Notes

Acknowledgements

The authors are thankful for the support of the Programa para el Desarrollo Profesional Docente (PRODEP), [Project DSA/103.5/16/10242 with CUP: 2II1605, 2016]. We also wish to thank Ph.D. Aitor Aizpuru for checking the text.

Supplementary material

41981_2018_27_Fig10_ESM.png (17 kb)
ESM 1

(PNG 16 kb)

41981_2018_27_MOESM1_ESM.tif (40 kb)
High Resolution (TIF 40 kb)

References

  1. 1.
    Wongwisate P, Chavadej S, Gulari E, Sreethawong T, Rangsunvigit P (2011) Effects of monometallic and bimetallic Au–Ag supported on sol–gel TiO2 on photocatalytic degradation of 4-chlorophenol and its intermediates. Desalination 272(1):154–163.  https://doi.org/10.1016/j.desal.2011.01.016 Google Scholar
  2. 2.
    Zhou L-C, Meng X-G, Fu J-W, Yang Y-C, Yang P, Mi C (2014) Highly efficient adsorption of chlorophenols onto chemically modified chitosan. Appl Surf Sci 292:735–741.  https://doi.org/10.1016/j.apsusc.2013.12.041 Google Scholar
  3. 3.
    Xu J, Lv X, Li J, Li Y, Shen L, Zhou H, Xu X (2012) Simultaneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support. J Hazard Mater 225-226:36–45.  https://doi.org/10.1016/j.jhazmat.2012.04.061 Google Scholar
  4. 4.
    Arellano-González MÁ, González I, Texier A-C (2016) Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes. J Hazard Mater 314:181–187.  https://doi.org/10.1016/j.jhazmat.2016.04.048 Google Scholar
  5. 5.
    Rubín E, Rodríguez P, Herrero R, Sastre de Vicente Manuel E (2006) Biosorption of phenolic compounds by the brown alga Sargassum muticum. J Chem Technol Biotechnol 81(7):1093–1099.  https://doi.org/10.1002/jctb.1430 Google Scholar
  6. 6.
    Kao P-C, Tzeng J-H, Huang T-L (2000) Removal of chlorophenols from aqueous solution by fly ash. J Hazard Mater 76(2):237–249.  https://doi.org/10.1016/S0304-3894(00)00201-6 Google Scholar
  7. 7.
    Lin Y-H (2017) Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification. Appl Water Sci 7(7):3741–3757.  https://doi.org/10.1007/s13201-016-0522-0 Google Scholar
  8. 8.
    Rashid J, Barakat MA, Ruzmanova Y, Chianese A (2015) Fe3O4/SiO2/TiO2 nanoparticles for photocatalytic degradation of 2-chlorophenol in simulated wastewater. Environ Sci Pollut Res 22(4):3149–3157.  https://doi.org/10.1007/s11356-014-3598-9 Google Scholar
  9. 9.
    Ba-Abbad MM, Takriff MS, Kadhum AAH, Mohamad AB, Benamor A, Mohammad AW (2017) Solar photocatalytic degradation of 2-chlorophenol with ZnO nanoparticles: optimisation with D-optimal design and study of intermediate mechanisms. Environ Sci and Pollut Res 24(3):2804–2819.  https://doi.org/10.1007/s11356-016-8033-y Google Scholar
  10. 10.
    Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2016) Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N co-doped TiO2 under visible light. Environ Sci Pollut Res 23(4):3884–3896.  https://doi.org/10.1007/s11356-015-5570-8 Google Scholar
  11. 11.
    Xu J, Wang F, Liu W, Cao W (2013) Nanocrystalline N-doped powders: mild hydrothermal synthesis and photocatalytic degradation of phenol under visible light irradiation. Int J Photoenergy 2013:1–7.  https://doi.org/10.1155/2013/616139 Google Scholar
  12. 12.
    Yu X, Zhou M, Hu Y, Groenen Serrano K, Yu F (2014) Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environ Sci Pollut Res 21(14):8417–8431.  https://doi.org/10.1007/s11356-014-2820-0 Google Scholar
  13. 13.
    Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367.  https://doi.org/10.1007/s11356-014-2783-1 Google Scholar
  14. 14.
    Peralta E, Ruíz M, Martínez G, Mentado-Morales J, Zárate LG, Cordero ME, Garcia-Morales MA, Natividad R, Regalado-Méndez A (2018) Degradation of 4-Chlorophenol in a batch electrochemical reactor using BDD electrodes. Int J Eletrochem Sci 13(5):4625–4639.  https://doi.org/10.20964/2018.05.21 Google Scholar
  15. 15.
    Oturan MA (2014) Electrochemical advanced oxidation technologies for removal of organic pollutants from water. Environ Sci Pollut Res 21(14):8333–8335.  https://doi.org/10.1007/s11356-014-2841-8 Google Scholar
  16. 16.
    Rivero EP, Rivera FF, Cruz-Díaz MR, Mayen E, González I (2012) Numerical simulation of mass transport in a filter press type electrochemical reactor FM01-LC: comparison of predicted and experimental mass transfer coefficient. Chem Eng Res Des 90(11):1969–1978.  https://doi.org/10.1016/j.cherd.2012.04.010 Google Scholar
  17. 17.
    Vázquez L, Alvarez-Gallegos A, Sierra FZ, de León CP, Walsh FC (2013) CFD evaluation of internal manifold effects on mass transport distribution in a laboratory filter-press flow cell. J of Appl Electrochem 43(4):453–465.  https://doi.org/10.1007/s10800-013-0530-9 Google Scholar
  18. 18.
    Rivera Fernando F, Rodríguez Francisca A, Rivero Eligio P, Cruz-Díaz Martín R (2018) Parametric mathematical modelling of cristal violet dye electrochemical oxidation using a flow electrochemical reactor with BDD and DSA anodes in sulfate media. ijcre 16:In press.  https://doi.org/10.1515/ijcre-2017-0116
  19. 19.
    Rivero EP, Ortega A, Cruz-Díaz MR, González I (2018) Modelling the transport of ions and electrochemical regeneration of the resin in a hybrid ion exchange/electrodialysis process for as(V) removal. J Appl Electrochem 48:597–610.  https://doi.org/10.1007/s10800-018-1191-5 Google Scholar
  20. 20.
    Rivera FF, Cruz-Díaz MR, Rivero EP, González I (2010) Analysis and interpretation of residence time distribution experimental curves in FM01-LC reactor using axial dispersion and plug dispersion exchange models with closed–closed boundary conditions. Electrochim Acta 56(1):361–371.  https://doi.org/10.1016/j.electacta.2010.08.069 Google Scholar
  21. 21.
    Regalado-Méndez A, Mentado-Morales J, Vázquez Carlos E, Martínez-Villa G, Cordero Mario E, Zárate Luis G, Skogestad S, Peralta-Reyes E (2018) Modeling and hydraulic characterization of a filter-press-type electrochemical reactor by using residence time distribution analysis and hydraulic indices. ijcre 16:In press.  https://doi.org/10.1515/ijcre-2017-0210
  22. 22.
    Mascia M, Vacca A, Palmas S, Polcaro A (2007) Kinetics of the electrochemical oxidation of organic compounds at BDD anodes: modelling of surface reactions. J Appl Electrochem 37(1):71–76.  https://doi.org/10.1007/s10800-006-9217-9 Google Scholar
  23. 23.
    Mascia M, Vacca A, Polcaro AM, Palmas S, Ruiz JR, Da Pozzo A (2010) Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: experimental study and mathematical model. J Hazard Mater 174(1):314–322.  https://doi.org/10.1016/j.jhazmat.2009.09.053 Google Scholar
  24. 24.
    Scialdone O (2009) Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochim Acta 54(26):6140–6147.  https://doi.org/10.1016/j.electacta.2009.05.066 Google Scholar
  25. 25.
    Mascia M, Vacca A, Palmas S (2012) Fixed bed reactors with three dimensional electrodes for electrochemical treatment of waters for disinfection. Chem Eng J 211-212:479–487.  https://doi.org/10.1016/j.cej.2012.09.091 Google Scholar
  26. 26.
    Cruz-Díaz MR, Rivero EP, Rodríguez FA, Domínguez-Bautista R (2018) Experimental study and mathematical modeling of the electrochemical degradation of dyeing wastewaters in presence of chloride ion with dimensional stable anodes (DSA) of expanded meshes in a FM01-LC reactor. Electrochim Acta 260:726–737.  https://doi.org/10.1016/j.electacta.2017.12.025 Google Scholar
  27. 27.
    Rivero EP, Rodríguez FA, Cruz-Díaz MR, González I (2018) Reactive diffusion migration layer and mass transfer wall function to model active chlorine generation in a filter press type electrochemical reactor for organic pollutant degradation. Chem Eng Res Des.  https://doi.org/10.1016/j.cherd.2018.07.010
  28. 28.
    Catellanos-Cruz M, Reyes EP, Cordero ME, Uribe-López JS, Mentado-Morales J, Zárate LG, Martínez-Villa G, Torres-Zárate SR, Regalado-Méndez A (2017) Mineralization of 2-Chlorophenol in a filter­press type electrochemical reactor: variable effects of flow rate, initial pH, and current density. Paper presented at the 10th world congress of chemical engineering. Barcelona, Spain, p 2017Google Scholar
  29. 29.
    Santana-Martínez G, Roa-Morales G, Martin del Campo E, Romero R, Frontana-Uribe BA, Natividad R (2016) Electro-Fenton and electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization. Electrochim Acta 195:246–256.  https://doi.org/10.1016/j.electacta.2016.02.093 Google Scholar
  30. 30.
    Pérez T, León MI, Nava JL (2013) Numerical simulation of current distribution along the boron-doped diamond anode of a filter-press-type FM01-LC reactor during the oxidation of water. J Electroanal Chem 707:1–6.  https://doi.org/10.1016/j.jelechem.2013.08.014 Google Scholar
  31. 31.
    Sirés I, Brillas E (2012) Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int 40:212–229.  https://doi.org/10.1016/j.envint.2011.07.012 Google Scholar
  32. 32.
    Rivera FF, CPd L, Walsh FC, Nava JL (2015) The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell. Electrochim Acta 161:436–452.  https://doi.org/10.1016/j.electacta.2015.02.161 Google Scholar
  33. 33.
    Mott HV, Green ZA (2015) On Danckwerts’ boundary conditions for the plug-flow with dispersion/reaction model. Chem Eng Commun 202(6):739–745.  https://doi.org/10.1080/00986445.2013.871708 Google Scholar
  34. 34.
    Sandoval MA, Fuentes R, Walsh FC, Nava JL, de León CP (2016) Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells. Electrochim Acta 216:490–498.  https://doi.org/10.1016/j.electacta.2016.09.045 Google Scholar
  35. 35.
    Brown CJ, Pletcher D, Walsh FC, Hammond JK, Robinson D (1993) Studies of space-averaged mass transport in the FM01-LC laboratory electrolyser. J Appl Electrochem 23(1):38–43.  https://doi.org/10.1007/bf00241573 Google Scholar
  36. 36.
    Vázquez L, Alvarez-Gallegos A, Sierra FZ, Ponce de León C, Walsh FC (2010) Simulation of velocity profiles in a laboratory electrolyser using computational fluid dynamics. Electrochim Acta 55(10):3437–3445.  https://doi.org/10.1016/j.electacta.2009.08.066 Google Scholar
  37. 37.
    Kim S, Kim Y-K (2004) Apparent desorption kinetics of phenol in organic solvents from spent activated carbon saturated with phenol. Cheml Eng J 98(3):237–243.  https://doi.org/10.1016/j.cej.2003.10.006 Google Scholar
  38. 38.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11):1857–1862.  https://doi.org/10.1016/0013-4686(94)85175-1 Google Scholar
  39. 39.
    Sulaymon AH, Abbar AH (2012) Scale-up of electrochemical reactors. Electrolysis IntechOpen.  https://doi.org/10.5772/48728
  40. 40.
    Walsh FC, Ponce de León C (2018) Progress in electrochemical flow reactors for laboratory and pilot scale processing. Electrochim Acta 280:121–148.  https://doi.org/10.1016/j.electacta.2018.05.027 Google Scholar

Copyright information

© Akadémiai Kiadó 2019

Authors and Affiliations

  1. 1.Campus Puerto ÁngelUniversidad del MarOaxacaMexico
  2. 2.Escuela de Ingeniería QuímicaUniversidad Popular Autónoma del Estado de PueblaPueblaMexico
  3. 3.Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores CuautitlánUniversidad Nacional Autónoma de MéxicoCuautitlán IzcalliMexico

Personalised recommendations