Advertisement

Some Bounds of Eigenvalues for Hadamard Product and Fan Product of Tensors

  • Yangyang Xu
  • Bing ZhengEmail author
  • Ruijuan Zhao
Original Paper
  • 10 Downloads

Abstract

In this paper, some new upper bounds on the spectral radius of Hadamard product of nonnegative tensors are given. To show their sharpness, the comparisons among these bounds, including the existing one by Sun et al. (Linear Multilinear Algebra 66:1199–1214, 2018), are performed. We also present some lower bounds on the minimum eigenvalue of Fan product of irreducible strong \({{\mathcal {M}}}\)-tensors and their sharpness under different conditions are investigated. Some numerical examples are provided to illustrate our theoretical results.

Keywords

Hadamard product Fan product Nonnegative tensor Strong \({{\mathcal {M}}}\)-tensor Eigenvalue Upper and lower bounds 

Mathematics Subject Classification

15A69 15A18 15A42 

Notes

Acknowledgements

The authors would like to thank the anonymous referees who made much useful and detailed suggestions that helped us to improve the quality of this paper. This work was supported by the National Natural Science Foundation of China (No. 11571004) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-it54).

References

  1. 1.
    Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yang, Y.N., Yang, Q.Z.: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, New York, pp. 129–132 (2005)Google Scholar
  4. 4.
    Zhang, L.P., Qi, L.Q., Zhou, G.L.: \({{\cal{M}}}\)-tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437–452 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, C.Q., Chen, Z., Li, Y.T.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Qi, L.Q., Sun, W.Y., Wang, Y.J.: Numerical multilinear algebra and its applications. Front. Math. China 2, 501–526 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, C.Q., Li, Y.T., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, C.Q., Wang, Y.Q., Yi, J.Y., Li, Y.T.: Bounds for the spectral radius of nonnegative tensors. J. Ind. Manag. Optim. 12, 1–16 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Li, C.Q., Zhou, J.J., Li, Y.T.: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64, 727–736 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, S.H., Li, C.Q., Li, Y.T.: A new bound for the spectral radius of nonnegative tensors. J. Inequal. Appl. 2017, 88 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhao, J.X., Sang, C.L.: Two new lower bounds for the minimum eigenvalue of \({{\cal{M}}}\)-tensors. J. Inequal. Appl. 2016, 268 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhao, J.X., Sang, C.L.: An eigenvalue localization set for tensors and its applications. J. Inequal. Appl. 2017, 59 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    He, J., Huang, T.Z.: Inequalities for \({{\cal{M}}}\)-tensors. J. Inequal. Appl. 2014, 114 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Qi, L.Q.: Hankel tensors: Associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  16. 16.
    Qi, L.Q., Xu, C.Q., Xu, Y.: Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm. SIAM J. Matrix Anal. Appl. 35, 1227–1241 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kannan, M.R., Shaked-Monderer, N., Berman, A.: Some properties of strong \({{\cal{H}}}\)-tensors and general \({{\cal{H}}}\)-tensors. Linear Algebra Appl. 476, 42–55 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhou, J., Sun, L.Z., Wei, Y.P., Bu, C.J.: Some characterizations of \({{\cal{M}}}\)-tensors via digraphs. Linear Algebra Appl. 495, 190–198 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xu, Y.Y., Li, Y.T., Li, Z.B.: Some results on the Hadamard product of tensors. Bull. Iran. Math. Sci. Soc. (2018).  https://doi.org/10.1007/s41980-018-00193-0 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li, Y.T., Li, Y.Y., Wang, R.W., Wang, Y.Q.: Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 432, 536–545 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, Q.B., Chen, G.L.: On two inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 431, 974–984 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhao, L.L., Liu, Q.B.: Some inequalities on the spectral radius of matrices. J. Inequal. Appl. 5, 1–12 (2018)MathSciNetGoogle Scholar
  23. 23.
    Fang, M.Z.: Bounds on the eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 425, 7–15 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Huang, R.: Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 428, 1551–1559 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhou, D.M., Chen, G.L., Wu, G.X., Zhang, X.Y.: On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 438, 1415–1426 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sun, L.Z., Zheng, B.D., Zhou, J., Yan, H.: Some inequalities for the Hadamard product of tensors. Linear Multilinear Algebra. 66, 1199–1214 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ding, W.Y., Qi, L.Q.: \({{\cal{M}}}\)-tensors and nonsingular \({{\cal{M}}}\)-tensors. Linear Algebra Appl. 439, 3264–3278 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cheng, G.H.: New bounds for the minimum eigenvalue of the Fan product of two \(M\)-matrices. Czech. Math. J. 64, 63–68 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chang, K.C., Pearson, K., Zhang, T.: Perron–Frobenius theorem for nonnegative tensors. Commun. Math. Sci. 6, 507–520 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hardy, G.H., Littlewood, J.E., Polya, G.: Inequality. Cambridge University Press, Cambridge (1934)Google Scholar
  31. 31.
    Zheng, Y.M., Cui, R.Q.: Upper bound of the spectral radius for Hadamard product of nonnegative matrices. J. Henan Polytech. Univ.(Nat. Sci.) 29, 543–546 (2010)Google Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.School of Mathematics and PhysicsLanzhou Jiaotong UniversityLanzhouPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations