Advertisement

Majorization Results for Subclasses of Starlike Functions Based on the Sine and Cosine Functions

  • Huo TangEmail author
  • H. M. Srivastava
  • Shu-Hai Li
  • Guan-Tie Deng
Original Paper
  • 2 Downloads

Abstract

The object of this paper was to study two majorization results for the subclasses \(S^*_{s}\) and \(S^*_{c}\) of starlike functions, which are, respectively, associated with the sine and cosine functions, without acting upon any linear or nonlinear operators to the above function classes.

Keywords

Analytic function Principle of subordination Majorization Starlike functions Sine and cosine functions 

Mathematics Subject Classification

30C45 30C80 

Notes

Acknowledgements

The research of the first-named author (Huo Tang) was partly supported by the Natural Science Foundation of the People’s Republic of China under Grants 11561001 and 11271045, the Program for Young Talents of Science and Technology in the Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Natural Science Foundation of Inner Mongolia of the People’s Republic of China under Grant 2018MS01026 and the Natural Science Foundation of Chifeng of Inner Mongolia of the People’s Republic of China.

References

  1. 1.
    Altintas, O., Özkan, Ö., Srivastava, H.M.: Majorization by starlike functions of complex order. Complex Var. Theory Appl. 46, 207–218 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Altintas, O., Srivastava, H.M.: Some majorization problems associated with \(p\)-valently starlike and convex functions of complex order. East Asian Math. J. 17(2), 207–218 (2001)zbMATHGoogle Scholar
  3. 3.
    Cho, N.E., Kumar, V., Kumar, S.S., Ravichandran, V.: Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 45, 213–232 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goswami, P., Aouf, M.K.: Majorization properties for certain classes of analytic functions using the Sălăgean operator. Appl. Math. Lett. 23, 1351–1354 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goyal, S.P., Goswami, P.: Majorization for certain classes of analytic functions defined by fractional derivatives. Appl. Math. Lett. 22, 1855–1858 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Goyal, S.P., Goswami, P.: Majorization for certain classes of meromorphic functions defined by integral operator. Ann. Univ. Mariae Curie Skłodowska Lublin-Polonia 2, 57–62 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Janowski, W.: Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 28, 297–326 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kwon, O.S., Sim, Y.J., Cho, N.E., Srivastava, H.M.: Some radius problems related to a certain subclass of analytic functions. Acta Math. Sin. Engl. Ser. 30, 1133–1144 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, S.-H., Tang, H., En, A.: Majorization properties for certain new classes of analytic functions using the Sălăgean operator. J. Inequal. Appl. 2013, 1–8 (2013). (Article ID 86) CrossRefzbMATHGoogle Scholar
  10. 10.
    Ma, W., Minda, D.: An internal geometric characterization of strongly starlike functions. Ann. Univ. Mariae Curie-Skłodowska. Sect. A 45, 89–97 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    MacGregor, T.H.: Majorization by univalent functions. Duke Math. J. 34, 95–102 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Maharana, S., Prajapat, J.K., Srivastava, H.M.: The radius of convexity of partial sums of convex functions in one direction. Proc. Natl. Acad. Sci. Sect. A Phys. Sci. 87, 215–219 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nehari, Z.: Conformal Mapping. MacGraw-Hill Book Company, New York (1955)zbMATHGoogle Scholar
  14. 14.
    Panigrahi, T., El-Ashwah, R.M.: Majorization for subclasses of multivalent meromorphic functions defined through iterations and combinations of the Liu–Srivastava operator and a meromorphic analogue of the Cho–Kwon–Srivastava operator. Filomat 31(20), 6357–6365 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Prajapat, J.K., Aouf, M.K.: Majorization problem for certain class of \(p\)-valently analytic functions defined by generalized fractional differintegral operator. Comput. Math. Appl. 63, 42–47 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Roberston, M.S.: Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 76, 1–9 (1970)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Srivastava, H.M., Owa, S.: Current Topics in Analytic Function Theory. World Scientific Publishing Company, Singapore (1992)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tang, H., Aouf, M.K., Deng, G.-T.: Majorization problems for certain subclasses of meromorphic multivalent functions associated with the Liu–Srivastava operator. Filomat 29, 763–772 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tang, H., Deng, G.-T.: Majorization problems for certain classes of multivalent analytic functions related with the Srivastava–Khairnar–More operator and exponential function. Filomat 32, 5319–5328 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tang, H., Deng, G.-T., Li, S.-H.: Majorization properties for certain classes of analytic functions involving a generalized differential operator. J. Math. Res. Appl. 33, 578–586 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tang, H., Li, S.-H., Deng, G.-T.: Majorization properties for a new subclass of \(\theta \)-spiral functions of order \(\gamma \). Math. Slovaca 64, 39–50 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  • Huo Tang
    • 1
    Email author
  • H. M. Srivastava
    • 2
    • 3
  • Shu-Hai Li
    • 1
  • Guan-Tie Deng
    • 4
  1. 1.School of Mathematics and StatisticsChifeng UniversityChifengPeople’s Republic of China
  2. 2.Department of Mathematics and StatisticsUniversity of VictoriaVictoriaCanada
  3. 3.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungRepublic of China
  4. 4.School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations