Advertisement

Iterative Approximations of Attractive Point of A New Generalized Bregman Nonspreading Mapping in Banach Spaces

  • Bashir AliEmail author
  • Lawal Yusuf Haruna
Original Paper
  • 10 Downloads

Abstract

In this paper, a generic 2-generalized Bregman nonspreading mapping is introduced. Also, a Halpern-type iterative scheme for the approximation of attractive point of such mapping is constructed in the setting of Banach space. The result established generalized some recently announced results in the literature.

Keywords

2-generalized hybrid mapping Normally 2-generalized hybrid mapping 2-generalized nonspreading mapping Generic generalized Bregman nonspreading mapping 

Mathematics Subject Classification

47H09 47H10 47J25 

Notes

References

  1. 1.
    Ali, B., Harbau, M.H., Yusuf, L.H.: Existence theorems for attractive points of semigroups of Bregman generalized nonspreading mappings in Banach spaces. Adv. Oper. Theory 2, 257–268 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ali, B., Yusuf, L. H., Harbau, M. H.: Common attractive points approximation for family of generalized Bregman nonspreading mappings in Banach space. J. Nonlinear Convex Anal. (Submitted)Google Scholar
  3. 3.
    Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  4. 4.
    Asplund, E., Rockafella, R.T.: Gradient of convex functions. Trans. Am. Math. Soc. 139, 443–467 (1969)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baillon, J.B.: Un theoreme de type ergodique pour less contractions nonlinears dans un espaces de Hilbert. CR Acad. Sci. Paris Ser. A-B 280, 1511–1541 (1975)zbMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essentially smoothness, essentially strict convexity and Legendre functions in Banach space. Commun. Contemp. Math. 3, 615–647 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bregman, L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Butnariu, D., Iusem, A.N.: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, vol. 40. Kluwer Academic, Dordrecht (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. 2006, 39 (2006). (Article ID 84919)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Censor, Y., Lennt, A.: An iterative row-action method interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Halpern, B.: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957–961 (1967)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hirano, N., Kido, K., Takahashi, W.: Nonexpansive retractions and nonlinear Ergodic theorems in Banach spaces. Nonlinear Anal. 12, 1269–1281 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hiriart-Urruty, J.B., Lemarchal, C.: Convex Analysis and Minimization Algorithms II, vol 306 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1993)Google Scholar
  15. 15.
    Hojo, M., Kondo, A., Takahashi, W.: Weak and strong convergence theorems for commutative normally 2-generalized hybrid mappings in Hilbert spaces. Linear Nonlinear Anal. 4, 117–134 (2018)MathSciNetGoogle Scholar
  16. 16.
    Kocourek, P., Takahashi, W., Yao, J.-C.: Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces. Taiwan. J. Math. 14, 2497–2511 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kocourek, P., Takahashi, W., Yao, J.-C.: Fixed Point theorems and Ergodic theorems for nonlinear mappings in Banach space. Adv. Math. Econ. 15, 67–88 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kohsaka, F., Takahashi, W.: Proximal point algorithms with Bregman functions in Banach spaces. J. Nonlinear Convex Anal. 6, 505–523 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to a maximal monotone operators in Banach spaces. Arch. Math. (Basel) 19, 166–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kondo, A., Takahashi, W.: Attractive points and weak convergence theorems for normally N-generalized hybrid mappings in Hilbert spaces. Linear Nonlinear Anal. 3, 297–310 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kondo, A., Takahashi, W.: Strong convergence theorems of Halpern’s type for normally 2-generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 19, 617–631 (2018)MathSciNetGoogle Scholar
  22. 22.
    Lin, L.J., Takahashi, W.: Attractive point for generalized nonspreading mappings in Banach spasces. J. Convex Anal. 20, 265–284 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mainge, P.-E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16(7), 899–912 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Maruyama, T., Takahashi, W., Yao, M.: Fixed point and Ergodic theorems for new nonlinear mappings in Hilbert spasces. J. Nonlinear Convex Anal. 12, 185–197 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Naraghirad, E., Yao, J.-C.: Bregman weak relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2013, 141 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reich, S., Sabach, S.: A strong Convergence theorem for a proximal-type algorthm in reflexive Banach space. J. Nonlinear Convex Anal. 10, 471–485 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Resmerita, E.: On total convexity, Bregman projections and stability in Banach spaces. J. Convex Anal. 11, 1–16 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and its Application. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  29. 29.
    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2002)Google Scholar
  30. 30.
    Takahashi, W.: Fixed point theorems for new nonlinear mappings in Hilbert space. J. Nonlinear Convex Anal. 11, 79–88 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Takahashi, W., Takeuchi, Y.: Nonlinear Ergodic theorem without convexity for generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 12, 399–406 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Takahashi, W., Wong, N.-C., Yao, J.-C.: Attractive point and weak convergence theorem for new generalized hybrid mappings in Hilbert spaces. J. Nonlinear Convex Anal. 13(4), 745–757 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Takahashi, W., Wong, N.-C., Yao, J.-C.: Fixed point theorems for three new nonlinear mappings in Banach spaces. J. Nonlinear Convex Anal. 13, 368–381 (2012)MathSciNetGoogle Scholar
  34. 34.
    Takahashi, W., Wong, N.-C., Yao, J.-C.: Attractive Point and Mean Convergence theorem for new generalized nonspreading mappings in Banach spaces. Infinite products of operators and their applications. Contemp. Math. 636, 225–245 (2015)CrossRefzbMATHGoogle Scholar
  35. 35.
    Takahashi, W., Wong, N.-C., Yao, J.-C.: Attractive points and Halpern type strong convergence theorems in Hilbert spaces. J. Fixed Point Theory Appl. 17, 301–311 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Victoria, M.-M., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Contin. Dyn. Syst. 6(4), 1043–1063 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Xu, H.-K.: Another control condition in an iterativemethod for nonexpansive mappings. Bull. Austr. Math. Soc. 65(1), 109–113 (2002)CrossRefGoogle Scholar
  38. 38.
    Zalinescu, C.: Convex analysis in general vector spaces. World Scientific, River Edge (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBayero UniversityKanoNigeria
  2. 2.Department of Mathematical SciencesKaduna State UniversityKadunaNigeria

Personalised recommendations