On Minimal Besicovitch Arrangements in \({\mathbb {F}_q}^2\): Statistical Properties and Combinatorial Implications

  • Stéphane Blondeau Da SilvaEmail author
Original Paper


In this paper, we focus on planar minimal Besicovitch arrangements to highlight some of their properties. An appropriate probability space enables us to find again in an elegant way some straightforward equalities associated with these arrangements. Resulting inequalities are also brought out. A connection with arrangements of lines in \(\mathbb {R}^2\) is eventually made, where possible.


Besicovitch arrangements Finite field Kakeya problem 

Mathematics Subject Classification

11T99 51D20 05B05 



  1. 1.
    Blokhuis, A., Mazzocca, F.: The finite field Kakeya problem. Build. Bridges Between Math. Comput. Sci. 19, 205–218 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Blondeau Da Silva, S.: On randomly chosen arrangements of \(q+1\) lines with different slopes in \({\mathbb{F}}_q^2\). J. Number Theory 180C, 533–543 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cartier, P.: Les arrangements d’hyperplans: un chapitre de géométrie combinatoire. Sémin. Bourbaki 901(1980/81), 1–22 (1981)zbMATHGoogle Scholar
  4. 4.
    Faber, X.W.C.: On the finite field Kakeya problem in two dimensions. J. Number Theory 124, 248–257 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pott, A.: Finite Geometry and Character Theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  6. 6.
    Vinatier, S.: Éléments explicites en théorie algébrique des nombres (2013). Habilitation à Diriger des Recherches (HDR)Google Scholar
  7. 7.
    Wolff, T.: Recent work connected with the Kakeya problem. Prospects Math. 2, 129–162 (1996)zbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.XLIM-Mathis, UMR n°7252 CNRS-Université de LimogesLimogesFrance

Personalised recommendations