Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 6, pp 1805–1819 | Cite as

On Semi(prime) Rings and Algebras with Automorphisms and Generalized Derivations

  • Shakir AliEmail author
  • Basudeb Dhara
  • Brahim Fahid
  • Mohd Arif Raza
Original Paper


Let R be a ring. An additive mapping \(F : R\rightarrow R\) is called a generalized derivation if there exists a derivation \(d : R\rightarrow R \) such that \( F(x y) = F(x)y + xd(y)\) for all \( x, y \in R\). In this paper, first we describe the structure of prime rings involving automorphisms and then characterized generalized derivations on semiprime rings which satisfy certain differential identities. As applications, and apart from proving the other results, many known theorems can be either generalized or deduced. Moreover, we apply our results to functional analysis, and to study the analogous conditions for continuous linear generalized derivations on Banach algebras.


(Semi)prime ring Banach algebra Automorphism Derivation Generalized derivation 

Mathematics Subject Classification

16W25 16N60 16U80 46J45 



The authors are grateful to the learned referee(s) for his/her carefully reading the manuscript. The valuable suggestions and comments have simplified and clarified the paper immensely.


  1. 1.
    Alahmadi, A., Husain, A., Ali, S., Khan, A.N.: Generalized derivations on prime rings with involution. Commun. Math. Appl. 9(1), 87–97 (2017)Google Scholar
  2. 2.
    Albas, E., Argac, N.: Generalized derivations of prime rings. Algebra Colloq. 11(3), 399–410 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ali, S., Khan, M.S., Al-Shomrani, M.M.: Generalization of Herstein theorem and its applications to range inclusion problems. J. Egypt. Math. Soc. 22, 322–326 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ali, S., Ashraf, M., Khan, M.S., Vukman, J.: Commutativity of rings involving additive mappings. Quaest. Math. 37, 1–15 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ali, S., Khan, M.S., Khan, A.N., Muthana, N.M.: On rings and algebras with derivations. J. Algebra Appl. 15(6), 1650107 (2016). MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ashraf, M., Raza, M.A., Parry, S.: Commutators having idempotent values with automorphisms in semi-prime rings. Math. Rep. (Bucur.) 20(70), 51–57 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beidar, K.I., Brex̆ar, M.: Extended Jacobson density theorem for rings with automorphisms and derivations. Isr. J. Math. 122, 317–346 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Beidar, K.I., Martindale III, W.S., Mikhalev, A.V.: Rings with Generalized Identities. Pure and Applied Mathematics, vol. 196. Marcel Dekker, New York (1996)zbMATHGoogle Scholar
  9. 9.
    Bell, H.E.: On the commutativity of prime rings with derivation. Quaest. Math. 22, 329–335 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bell, H.E., Daif, M.N.: On derivations and commutativity in prime rings. Acta Math. Hungar. 66, 337–343 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bell, H.E., Rehman, N.: Generalized derivation with commutativity and anticommutativity conditions. Math. J. Okayama Univ. 49, 139–147 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bonsall, F.F., Duncan, J.: Complete Normed Algebras. Springer, New York (1973)zbMATHCrossRefGoogle Scholar
  13. 13.
    Brešar, M.: On the distance of the composition of two derivations to the generalized derivations. Glasg. Math. J. 33, 89–93 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chuang, C.L.: The additive subgroup generated by a polynomial. Isr. J. Math. 59(1), 98–106 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chuang, C.L.: Differential identities with automorphism and anti-automorphism-I. J. Algebra 149, 371–404 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Daif, M.N.: Commutativity results for semiprime rings with derivations. Int. J. Math. Math. Sci. 21(3), 471–474 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Davvaz, B., Raza, M.A.: A note on automorphisms of Lie ideals in prime rings. Math. Slovaca 68(5), 1223–1229 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dhara, B., Argac, N., Pradhan, K.G.: annihilator condition of a pair of derivations in prime and semiprime rings. Indian J. Pure Appl. Math. 47, 111–124 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    De Filippis, V.: Generalized derivations with Engel condition on multilinear polynomials. Isr. J. Math. 171, 325–348 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    De Filippis, V.: Annihilators and power values of generalized skew derivations on Lie ideals. Can. Math. Bull. 59(2), 258–270 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Erickson, T.S., Martindale III, W.S., Osborn, J.M.: Prime nonassociative algebras. Pac. J. Math. 60, 49–63 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Herstein, I.N.: Topics in Ring Theory. The University of Chicago Press, Chicago (1969)zbMATHGoogle Scholar
  23. 23.
    Herstein, I.N.: On the Lie structure of an associative ring. J. Algebra 14, 561–571 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Herstein, I.N.: Rings with Involution. Chicago University Press, Chicago (1976)zbMATHGoogle Scholar
  25. 25.
    Hvala, B.: Generalized derivations in rings. Commun. Algebra 26, 1147–1166 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Jacobson, N.: Structure of Rings. American Mathematical Society Colloquium Publications, vol. 37. American Mathematical Society, Rhode Island (1964)Google Scholar
  27. 27.
    Kharchenko, V.K.: Generalized identities with automorphisms. Algebra i Logika 14(2), 215–237 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Lanski, C.: An Engel condition with derivation. Proc. Am. Math. Soc. 118(3), 731–734 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lee, T.K.: Semiprime rings with differential identities. Bull. Inst. Math. Acad. Sin. 20(1), 27–38 (1992)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lee, T.K.: Generalized derivations of left faithful rings. Commun. Algebra 27, 4057–4073 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lee, P.H., Lee, T.K.: Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sin. 11(1), 75–80 (1983)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Martindale III, W.S.: Prime rings satisfying a generalized polynomial identity. J. Algebra 12, 576–584 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mayne, J.H.: Centralizing automorphisms of prime rings. Can. Math. Bull. 19, 113–115 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Mayne, J.H.: Centralizing automorphisms of Lie ideals in prime rings. Can. Math. Bull. 35, 510–514 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Rais Khan, M., Ojha, D.B., Shadab, Mohd: Generalized derivation on Lie ideal in prime rings. Int. J. Math. Arch. 4(7), 61–65 (2013)Google Scholar
  36. 36.
    Raza, M.A., Rehman, N.: An identity on automorphisms of Lie ideals in prime rings. Ann. Univ. Ferrara 62(1), 143–150 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Rickart, C.E.: General Theory of Banach Algebras. D. Van Nostrand, Princeton (1960)zbMATHGoogle Scholar
  38. 38.
    Wang, Y.: Power-centralizing automorphisms of Lie ideals in prime rings. Commun. Algebra 34, 609–615 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  • Shakir Ali
    • 1
    Email author
  • Basudeb Dhara
    • 2
  • Brahim Fahid
    • 3
  • Mohd Arif Raza
    • 4
  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  2. 2.Department of MathematicsBelda CollegePaschim MedinipurIndia
  3. 3.Centre de Recherche de Mathématiques et Applications de Rabat (CeReMAR), Faculty of SciencesMohammed V University in RabatRabatMorocco
  4. 4.Department of Mathematics, Faculty of Science and Arts-RabighKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations