Advertisement

Reverse Order Law for the Drazin Inverse in Banach Spaces

  • Hua WangEmail author
  • Junjie Huang
Original Paper
  • 16 Downloads

Abstract

We derive some equivalent conditions for the reverse order law \((PQ)^D=Q^DP^D\) to hold for Drazin invertible bounded linear operators P and Q. Moreover, the Drazin invertibility of sum is investigated for two bounded linear operators and the expression of Drazin inverse is presented. The results generalize some recent works.

Keywords

Drazin inverse Reverse order law Bounded linear operator 

Mathematics Subject Classification

15A09 46C05 

Notes

References

  1. 1.
    Bouldin, R.H.: Generalized inverses and factorizations. Recent applications of generalized inverses. Pitman Ser. Res. Note. Math. 66, 233–248 (1982)zbMATHGoogle Scholar
  2. 2.
    Cao, C.G.: Reverse order law of group inverses of products of two matrices. Appl. Math. Comput. 158, 489–495 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Koliha, J.J.: A generalized Drazin inverse. Glasg. Math. J. 38, 367–381 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Koliha, J.J., CvetkovićcIlić, D.S., Deng, C.Y.: Generalized Drazin invertibility of combinations of idempotents. Linear Algebra Appl. 437, 2317–324 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Djordjević, D.S., Stanimirović, P.S.: On the generalized Drazin inverse and generalized resolvent. Czechoslovak Math. J 51, 617–634 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Djordjević, D.S.: Unified approach to the reverse order rule for generalized inverses. Acta Sci. Math. (Szeged) 67, 761–776 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Deng, C.Y.: The Drazin inverses of sum and difference of idempotents. Linear Algebra Appl. 430, 1282–1291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deng, C.Y., Wei, Y.M.: New additive results for the generalized Drazin inverse. J. Math. Anal. Appl. 370, 313–321 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Meyer, C.D., Rose, N.J.: The index and the Drazin inverse of block triangular matrices. SIAM J. Appl. Math. 33, 1–7 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mosić, D.: Reverse order laws for the generalized Drazin inverse in Banach algebras. J. Math. Anal. Appl 429, 461–477 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mosić, D.: Reverse order laws on the conditions of the commutativity up to a factor. RACSAM 111, 685–695 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tian, Y.H.: On the reverse order law \((A B )^D = B^ DA^ D\). J. Math. Res. Expos. 19, 355–358 (1999)zbMATHGoogle Scholar
  13. 13.
    Wang, G.R.: The reverse order law for the Drazin inverses of multiple matrix products. Linear Algebra Appl. 348, 265–272 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, G.R., Xu, Z.L.: The reverse order law for the W - weighted Drazin inverse of multiple matrices product. J. Appl. Math. Comput. 21, 239–248 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, X.N., Yu, A.Q., Li, T.F., Deng, C.Y.: Reverse order laws for the Drazin inverses. J. Math. Anal. Appl. 444, 672–689 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2019

Authors and Affiliations

  1. 1.College of SciencesInner Mongolia University of TechnologyHohhotPeople’s Republic of China
  2. 2.School of Mathematical SciencesInner Mongolia UniversityHohhotPeople’s Republic of China

Personalised recommendations