A New Type of Generalized Para-Kähler Spaces and Holomorphically Projective Transformations

  • Miloš Z. PetrovićEmail author
  • Ljubica S. Velimirović
Original Paper


In the present paper, we define a new class of generalized para-Kähler spaces by using two different kinds of covariant derivatives. Some properties of the curvature tensors as well as those of the corresponding Ricci tensors of new generalized para-Kähler spaces are pointed out. Also, we consider some tensor fields that are invariant with respect to holomorphically projective mappings of generalized para-Kähler spaces. Finally, we examine some PDE systems for the existence of infinitesimal holomorphically projective transformations of new types of generalized para-Kähler spaces with parallel torsion.


Generalized Riemannian space Generalized para-Kähler space Curvature tensor Infinitesimal holomorphically projective transformation 

Mathematics Subject Classification

Primary 53B05 Secondary 53B20 53B35 



This work was supported by Grant No. 174012 of the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors are grateful to the anonymous referee for many valuable comments and suggestions that improved readability and overall presentation of the paper.


  1. 1.
    Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    De, U.C., Deshmukh, S., Mandal, K.: On three-dimensional N(k)-paracontact metric manifolds and Ricci solitons. Bull. Iran. Math. Soc. 43(6), 1571–1583 (2017)MathSciNetGoogle Scholar
  3. 3.
    Domashev, V.V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Mat. Zametki 23, 297–303 (1978)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Eisenhart, L.P.: Generalized Riemannian spaces. Proc. Natl. Acad. Sci. USA 37, 311–315 (1951)CrossRefGoogle Scholar
  5. 5.
    Hall, G., Wang, Z.: Projective structure in 4-dimensional manifolds with positive definite metrics. J. Geom. Phys. 62, 449–463 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hinterleitner, I., Mikeš, J.: On F-planar mappings of spaces with affine connections. Note Mat. 27, 111–118 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hinterleitner, I., Mikeš, J., Stránská, J.: Infinitesimal F-planar transformations, Russ. Math., Vol. 52, No. 4, (2008), 13–18. Transl. from Iz. VuZ Matematika, No. 4, (2008), 16–21Google Scholar
  8. 8.
    Ivanov, S.: Connections with torsion, parallel spinors and geometry of Spin (7)-manifolds. Math. Res. Lett. 11, 171–186 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Janssen, T., Prokopec, T.: Problems and hopes in nonsymmetric gravity. J. Phys. A, Math. Theor. 40, 7067–7074 (2007)CrossRefGoogle Scholar
  10. 10.
    Kamber, F.W., Tondeur, Ph: Flat manifolds with parallel torsion. J. Differ. Geom. 2, 385–389 (1968)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb. 23, 90–98 (1980)zbMATHGoogle Scholar
  12. 12.
    Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 1334–1353 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods Mod. Phys. 11, 1450044 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Faculty of Science, Palacky university, Olomouc (2009)zbMATHGoogle Scholar
  15. 15.
    Mikeš, J., et al.: Differential geometry of special mappings. Palacký univ. Press, Olomouc (2015)zbMATHGoogle Scholar
  16. 16.
    Minčić, S.M.: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesnik 10, 161–172 (1973)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Minčić, S.M.: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math. Nouv. Sér. 22, 189–199 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Minčić, S.M.: Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion, Differential Geometry (Budapest, 1979), Colloq. Math. Soc. János Bolyai 31, North-Holland, Amsterdam, 445–460 (1982)Google Scholar
  19. 19.
    Minčić, S.M., Lj, S., Velimirović, M.S.Stanković: Infinitesimal deformations of a non-symmetric affine connection space. Filomat 15, 175–182 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Minčić, S.M.: On Ricci type identities in manifolds with non-symmetric affine connection. Publ. Inst. Math., Nouv. Sér. 94, 205–217 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Petrović, M.Z.: Holomorphically projective mappings between generalized hyperbolic Kähler spaces. J. Math. Anal. Appl. 447(1), 435–451 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Petrović, M.Z.: A type of generalized hyperbolic Kähler spaces. In: 13th International Conference on Geometry and Applications, Varna, Bulgaria, 1–5 September, 2017. J. Geom. (2018) 109: 17.
  23. 23.
    Prvanović, M.: Holomorphically projective transformations in a locally product Riemannian spaces. Math. Balkanica 1, 195–213 (1971)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Prvanović, M.: Four curvature tensors of non-symmetric affine connexion. In: Proc. Conf.: “150 years of Lobachevsky geometry”, Moscow (1977), pp. 199–205 (in Russian)Google Scholar
  25. 25.
    Lj, S., Velimirović, S.M., Minčić, M.S.Stanković: Infinitesimal deformations and Lie derivative of non-symmetric affine connection space, Acta univ. Palacki. Olomouc., Fac. rer. nat. Mathematica 42, 111–121 (2003)Google Scholar
  26. 26.
    Lj, S., Velimirović, S.M., Minčić, M.S.Stanković: Infinitesimal rigidity and flexibility of a non-symmetric affine connection space. Eur. J. Combin. 31(4), 1148–1159 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of Sciences and MathematicsUniversity of NišNišSerbia

Personalised recommendations