Developable Surfaces Through Sweeping Surfaces

  • R. A. Abdel-BakyEmail author
Original Paper


This paper studies the rotation minimizing frames that are associated with spatial curves and the sweeping surfaces which are generated by these frames. Then the necessary and sufficient condition for sweeping surface to be developable ruled surface is derived. In particular, we focused for the resulting developable surface is a cylinder, cone or tangent surface.


Line of curvature Profile curve Developable surface Parabolic points 

Mathematics Subject Classification

53A04 53A05 53A17 



  1. 1.
    Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Klok, F.: Two moving coordinate frames for sweeping along a 3D trajectory. Comput. Aided Geom. Des. 3, 217–229 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design and Manufacturing. Springer, Berlin (2002)zbMATHGoogle Scholar
  4. 4.
    Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweep surface modelling. Comput. Aided Des. 29, 379–91 (1997)CrossRefGoogle Scholar
  5. 5.
    Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotating minimizing frames. ACM Trans. Graph. 27, 1–18 (2008)Google Scholar
  6. 6.
    Wang, W., Joe, B.: Robust computation of the rotation minimizing frame for sweeping surface modelling. Comput. Aided Des. 29, 379–391 (1997)CrossRefGoogle Scholar
  7. 7.
    Zhao, H.Y., Wang, G.J.: A new method for designing a developable surface utilizing the surface pencil through a given curve. Progress Nat. Sci. 18, 105–110 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Karadag, H.B., Kılıç, E., Karadag, M.: On the developable ruled surfaces kinematically generated in Minkowski 3-space. Kuwait J. Sci. Eng. 41(1), 19–41 (2012)zbMATHGoogle Scholar
  9. 9.
    Li, C.-Y., Wang, R.H., Zhu, C.G.: An approach for designing a developable surface through a given line of curvature. Comput. Aided Des. 45, 621–627 (2013)CrossRefGoogle Scholar
  10. 10.
    Yıldız, O.G., Karakus, S.O., Hilmi Hacısalihoglu, H.H.: On the determination of a developable spherical orthotomic ruled surface. Bull. Math. Sci. 5, 137–146 (2015). MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood Cliffs (1976)zbMATHGoogle Scholar
  12. 12.
    Willmore, T.J.: An Introduction to Differential Geometry. Oxford University Press, Oxford (1959)zbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Sciences Faculty for GirlsJeddah UniversityJeddahKingdom of Saudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of AssiutAssiutEgypt

Personalised recommendations