Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 515–525 | Cite as

N-Relatively Invariant and N-Invariant Measure on Double Coset Spaces

  • F. Fahimian
  • R. A. Kamyabi GolEmail author
  • F. Esmaeelzadeh
Original Paper


For a locally compact group G and two closed subgroups H, K of G let N be the normalizer group of K in G and \(K{\backslash }G /H\) be the double coset spaces of G by H and K, respectively. The N-relatively invariant and N-invariant measures are defined for the double coset space \(K {\backslash } G /H\) and a necessary and sufficient condition for the existence of N-relatively invariant measure is given. Among other things, conditions under which there is an N-invariant measure are investigated.


Doble coset space Rho-function N-invariant measure N-relatively invariant measure 

Mathematics Subject Classification

Primary 47A55 Secondary 39B52 


  1. 1.
    Amini, M., Medghalchi, A.: Harmonic analysis on double coset spaces. arXiv:math/0205259 [math.FA] (2002)
  2. 2.
    Bourbaki, N.: Elements of Mathematics Integration (I), (II) (2004)Google Scholar
  3. 3.
    Bruhat, F.: Sur les reprsentations induites des groupes de Lie. Bull. Soc. Math. France. 81, 97–205 (1956)CrossRefzbMATHGoogle Scholar
  4. 4.
    Derikvand, T., Kamyabi Gol, R.A., Janfada, M.: On the generalized quotient integrals on homogeneous spaces. J. Appl. Anal. 23(2), 59–65 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Esmaeelzadeh, F., Gol, RAKamyabi: Homogeneous spaces and square-integrable representations. Ann. Funct. Anal. 7(1), 9–16 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fahimian, F., Gol, R. A. Kamyabi, Esmaeelzadeh, F.: N-strongly quasi invariant measure on double coset spaces. arXiv:math/1807.00132 [math.RT] (2017)
  7. 7.
    Folland, B. G.: A Course in Abstract Harmonic Analysis. CRC press, Inc (1995)Google Scholar
  8. 8.
    Farashahi, A.Ghaani: A class of abstract linear representations for convolution function algebras over homogeneous spaces of compact groups. Can. J. Math. 70(1), 97–116 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jewett, R.I.: Spaces with an abstract convolution of measures. Adv. Math. 18 (1975)Google Scholar
  10. 10.
    Liu, T.S.: Invariant measure on double coset spaces. J. Aust. Math. Soc. 5, 495–505 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Loomis, L.H.: Positive definite functions and induced representations. Duke Math. J. 27, 569–579 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mackey, G.W.: Induced representations of locally compact groups I. Ann. Math. 55, 101–139 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Reiter, H., Stegeman, J.: Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  • F. Fahimian
    • 1
  • R. A. Kamyabi Gol
    • 1
    Email author
  • F. Esmaeelzadeh
    • 2
  1. 1.Department of Mathematics, Center of Excellency in Analysis on Algebraic Structures (CEAAS)Ferdowsi University of MashhadMashhadIran
  2. 2.Department of Mathematics, Bojnourd BranchIslamic Azad UniversityBojnourdIran

Personalised recommendations