Advertisement

Bulletin of the Iranian Mathematical Society

, Volume 45, Issue 2, pp 447–453 | Cite as

On Ideals of Quasi-Commutative Semigroups

  • Mohammad Reza SorouheshEmail author
Original Paper
  • 23 Downloads

Abstract

The aim of this note is to use some structural properties of quasi-commutative semigroups to get information on their ideals.

Keywords

Quasi-commutative semigroup Maximal ideal Minimal ideal 

Mathematics Subject Classification

Primary 20M05 Secondary 20M99 

Notes

Acknowledgements

The author would like to thank Prof. A. Cherubini for her valuable comments.

References

  1. 1.
    Arajo, J., et al.: Between primitive and 2-transitive: synchronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017).  https://doi.org/10.4171/EMSS/4-2-1 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bosak, J.: On radicals of semigroups. Matematický časopis 18(3), 204–212 (1968)zbMATHGoogle Scholar
  3. 3.
    Brown, K.S.: Semigroups, rings, and Markov chains. J. Theor. Probab. 13(3), 871–938 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chacron, M., Thierrin, G.: \(\sigma -\)reflexive semigroups and rings. Can. Math. Bull. 15(2), 185–188 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cherubini, A., Varisco, A.: Quasi-commutative semigroups and \(\sigma \)-reflexive semigroups. Semigroup Forum 19, 313–321 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chrislock, J.L.: On medial semigroups. J. Algebra 12, 1–9 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups I. Amer. Math. Soc., Providence (1961)zbMATHGoogle Scholar
  8. 8.
    Eilenberg, S.: Automata, languages, and machines, vol. A. Academic, Boston (1974)zbMATHGoogle Scholar
  9. 9.
    Howie, J.M.: An introduction to semigroup theory. Academic, Boston (1976)zbMATHGoogle Scholar
  10. 10.
    Kmet, F.: On radicals in semigroups. Math. Slovaca 32, 183–188 (1982)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kmet, F.: Quasi-commutative weakly primary semigroups. Math. Slovaca 32(2), 183–188 (1982)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lal, H.: Quasi-commutative primary semigroups. Matematički Vesnik 12(59), 271–278 (1975)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lal, H.: Radicals in quasi-commutative semigroups. Matematický časopis 25(3), 287–288 (1975)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lawson, M.V.: Finite Automata. Chapman & Hall/CRC, Boca Raton (2003)CrossRefGoogle Scholar
  15. 15.
    Mukherjee, N.P.: Quasi-commutative semigroups I. Czechoslovak Math. J. 22(3), 449–453 (1972)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nagore, C.S.H.: Quasi-commutative Q semigroups. Semigroup Forum 15(1), 189–193 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pin, J.-E.: Mathematical Foundations of Automata Theory (2012). https://www.irif.fr/~jep/PDF/MPRI/MPRI.pdf
  18. 18.
    Pin, J.-E.: Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16(1), 343–384 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sorouhesh, M.R., Dosstie, H.: Quasi-commutative semigroups of finite order related to Hamiltonian groups. Bull. Korean Math. Soc. 52(1), 239–246 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    The GAP Group.: GAP-Groups, Algorithms and programming, Version 4.8.8 (2017). http://www.gap-system.org

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Department of MathematicsIslamic Azad University, South Tehran BranchTehranIran

Personalised recommendations