Advertisement

On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition

  • Soudabeh Shemehsavar
Original Paper

Abstract

We consider a random self-similar polynomials where the coefficients form a sequence of independent normally distributed random variables. We study the behavior of the expected density of real zeros of these polynomials when the variances of the middle coefficients are substantially larger than the others. Numerical sets show the existence of a phase transition for a critical value of a parameter that defines the variance. We also discuss the case where the variances of the coefficients are decreasing, and obtain the asymptotic behavior of the expected number of real zeros of such polynomials.

Keywords

Random polynomial Number of real zeros Expected density Self-similar property 

Mathematics Subject Classification

Primary 65H42 Secondary 60G99 

Notes

Acknowledgements

The author is grateful to the Editor-in-Chief and an anonymous referee for making many helpful comments and suggestions on an earlier version of this article. Special thanks to Professor Ross Maller for making many helpful comments and suggestions on an earlier version of this paper.

References

  1. 1.
    Bloch, A., Pólya, G.: On the roots of certain algebraic equations. Proc. Lond. Math. Soc 33(3), 102–114 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Littlewood, J., Offord, A.: On the number of real roots of a random algebraic equation. J. Lond. Math. Soc. 13(4), 288–295 (1938)CrossRefzbMATHGoogle Scholar
  3. 3.
    Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49(4), 314–320 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ibragimov, I.A., Maslova, N.B.: On the expected number of real zeros of random polynomials. I. Coefficients with zero means. Theory Probab. Appl. 16(2), 228–248 (1971)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ibragimov, I.A., Maslova, N.B.: On the expected number of real zeros of random polynomials. II. Coefficients with zero means. Theory Probab. Appl. 16(3), 485–493 (1971)CrossRefzbMATHGoogle Scholar
  6. 6.
    Erdos, P., Offord, A.C.: On the number of real roots of a random algebraic equation. Proc. Lond. Math. Soc 6(3), 139–160 (1956). MR 17:500fMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. AMS 32(1), 1–37 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farahmand, K.: Real zeros of random algebraic polynomials. Proc. Am. Math. Soc 113, 1077–1084 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sambandham, M.: On the real roots of the random algebraic polynomial. Indian J. Pure Appl. Math. 7, 1062–1070 (1976)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sambandham, M.: On a random algebraic equation. J. Indian Math. Soc. 41, 83–97 (1977)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rezakhah, S., Soltani, A.R.: On the expected number of real zeros of certain gaussian random polynomials. Stoc. Anal. Appl. 21(1), 223–234 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rezakhah, S., Shemehsavar, S.: On the average number of level crossings of certain Gaussian random polynomials. Nonlinear Anal. 63(5), 555–567 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Rezakhah, S., Shemehsavar, S.: Expected number of slop crossings of certain Gaussian random polynomials. Stoc. Anal. Appl. 26(1), 223–234 (2007)zbMATHGoogle Scholar
  14. 14.
    Bharucha-Ried, A.T., Sambandham, M.: Random Polynomials. Academic, New York (1986)zbMATHGoogle Scholar
  15. 15.
    Farahmand, K.: Topics in Random Polynomials. Addison Wesley Longman, London (1998)zbMATHGoogle Scholar
  16. 16.
    Diaconism, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electron. J. Combin. 11(2), 2 (2004)MathSciNetGoogle Scholar
  17. 17.
    Farmer, D.W., Mazzadri, F., Snaith, N.C.: Random polynomials, random matrices and L-functions. Nonlinearity 19(4), 919–936 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5–6), 639–679 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Farahmand, K., Gao, J.: Algebraic polynomials with symmetric random coefficients. Rocky Mt. J. O. Math. 44(2), 521–529 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Logan, B.F., Shepp, L.A.: Real zeros of random polynomials. Proc. Lond. Math. Soc. 18(1), 29–35 (1968). MR 38:1830MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley, New York (1967)zbMATHGoogle Scholar
  22. 22.
    Rezakhah, S., Shemehsavar, S.: New features on real zeros of random polynomials. Nonlinear Anal. 71(12), 2233–2238 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24(1), 46–156 (1945)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of TehranTehranIran

Personalised recommendations