Advertisement

On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition

Original Paper

Abstract

We consider a random self-similar polynomials where the coefficients form a sequence of independent normally distributed random variables. We study the behavior of the expected density of real zeros of these polynomials when the variances of the middle coefficients are substantially larger than the others. Numerical sets show the existence of a phase transition for a critical value of a parameter that defines the variance. We also discuss the case where the variances of the coefficients are decreasing, and obtain the asymptotic behavior of the expected number of real zeros of such polynomials.

Keywords

Random polynomial Number of real zeros Expected density Self-similar property 

Mathematics Subject Classification

Primary 65H42 Secondary 60G99 

Notes

Acknowledgements

The author is grateful to the Editor-in-Chief and an anonymous referee for making many helpful comments and suggestions on an earlier version of this article. Special thanks to Professor Ross Maller for making many helpful comments and suggestions on an earlier version of this paper.

References

  1. 1.
    Bloch, A., Pólya, G.: On the roots of certain algebraic equations. Proc. Lond. Math. Soc 33(3), 102–114 (1932)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Littlewood, J., Offord, A.: On the number of real roots of a random algebraic equation. J. Lond. Math. Soc. 13(4), 288–295 (1938)CrossRefMATHGoogle Scholar
  3. 3.
    Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49(4), 314–320 (1943)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ibragimov, I.A., Maslova, N.B.: On the expected number of real zeros of random polynomials. I. Coefficients with zero means. Theory Probab. Appl. 16(2), 228–248 (1971)CrossRefMATHGoogle Scholar
  5. 5.
    Ibragimov, I.A., Maslova, N.B.: On the expected number of real zeros of random polynomials. II. Coefficients with zero means. Theory Probab. Appl. 16(3), 485–493 (1971)CrossRefMATHGoogle Scholar
  6. 6.
    Erdos, P., Offord, A.C.: On the number of real roots of a random algebraic equation. Proc. Lond. Math. Soc 6(3), 139–160 (1956). MR 17:500fMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Edelman, A., Kostlan, E.: How many zeros of a random polynomial are real? Bull. AMS 32(1), 1–37 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Farahmand, K.: Real zeros of random algebraic polynomials. Proc. Am. Math. Soc 113, 1077–1084 (1991)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sambandham, M.: On the real roots of the random algebraic polynomial. Indian J. Pure Appl. Math. 7, 1062–1070 (1976)MathSciNetMATHGoogle Scholar
  10. 10.
    Sambandham, M.: On a random algebraic equation. J. Indian Math. Soc. 41, 83–97 (1977)MathSciNetMATHGoogle Scholar
  11. 11.
    Rezakhah, S., Soltani, A.R.: On the expected number of real zeros of certain gaussian random polynomials. Stoc. Anal. Appl. 21(1), 223–234 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rezakhah, S., Shemehsavar, S.: On the average number of level crossings of certain Gaussian random polynomials. Nonlinear Anal. 63(5), 555–567 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Rezakhah, S., Shemehsavar, S.: Expected number of slop crossings of certain Gaussian random polynomials. Stoc. Anal. Appl. 26(1), 223–234 (2007)MATHGoogle Scholar
  14. 14.
    Bharucha-Ried, A.T., Sambandham, M.: Random Polynomials. Academic, New York (1986)MATHGoogle Scholar
  15. 15.
    Farahmand, K.: Topics in Random Polynomials. Addison Wesley Longman, London (1998)MATHGoogle Scholar
  16. 16.
    Diaconism, P., Gamburd, A.: Random matrices, magic squares and matching polynomials. Electron. J. Combin. 11(2), 2 (2004)MathSciNetGoogle Scholar
  17. 17.
    Farmer, D.W., Mazzadri, F., Snaith, N.C.: Random polynomials, random matrices and L-functions. Nonlinearity 19(4), 919–936 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Bogomolny, E., Bohigas, O., Leboeuf, P.: Quantum chaotic dynamics and random polynomials. J. Stat. Phys. 85(5–6), 639–679 (1996)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Farahmand, K., Gao, J.: Algebraic polynomials with symmetric random coefficients. Rocky Mt. J. O. Math. 44(2), 521–529 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Logan, B.F., Shepp, L.A.: Real zeros of random polynomials. Proc. Lond. Math. Soc. 18(1), 29–35 (1968). MR 38:1830MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Cramér, H., Leadbetter, M.R.: Stationary and Related Stochastic Processes. Wiley, New York (1967)MATHGoogle Scholar
  22. 22.
    Rezakhah, S., Shemehsavar, S.: New features on real zeros of random polynomials. Nonlinear Anal. 71(12), 2233–2238 (2009)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24(1), 46–156 (1945)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of TehranTehranIran

Personalised recommendations