Advertisement

Tate Cohomology for Complexes with Finite Gorenstein AC-Injective Dimension

  • Jianmin Xing
  • Tiwei Zhao
  • Yunxia Li
  • Jiangsheng Hu
Original Paper
  • 4 Downloads

Abstract

In this paper, we introduce and study a notion of Gorenstein AC-injective dimension for complexes of left modules over associative rings. We show first that the class of complexes with finite Gorenstein AC-injective dimension is exactly the class of complexes admitting a complete \(\mathcal {AC}\)-coresolution. Then the interaction between the corresponding relative and Tate cohomologies of complexes is given. Finally, the relationships between Gorenstein AC-injective dimensions and injective dimensions for complexes are given.

Keywords

Complexes Absolutely clean Gorenstein AC-injective Tate cohomology 

Mathematics Subject Classification

Primary 18G25 Secondary 16E30 16E10 

Notes

Acknowledgements

This research was partially supported by National Natural Science Foundation of China (11501257,11771212,11671069, 11571164), China Postdoctoral Science Foundation funded project (2016M600426), Postgraduate Research and Innovation Program of Jiangsu Province (KYZZ_160034), Research Project of Teaching Reform in Undergraduate Colleges and Universities in Shandong Province 2016(Z2016Z005), Nanjing University Innovation and Creative Program for PhD candidate (2016011) and Jinling Institute of Technology of China (jit-b-201638, jit-fhxm-2-1707), Qing Lan Project of Jiangsu Province. The authors would like to thank the referee for many considerable suggestions and showing us Corollary 3.13 and Remark 3.14, which have greatly improved this paper.

References

  1. 1.
    Asadollahi, J., Salarian, S.: Cohomology theories based on Gorenstein injective modules. Trans. Am. Math. Soc. 358, 2183–2203 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. Commun. Algebra 34, 3009–3022 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71, 129–155 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Avramov, L.L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. Lond. Math. Soc. 85, 393–440 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bravo, D., Gillespie, J., Hovey, M.: The stable module category of a general ring, arXiv:1405.5768 (2014)
  6. 6.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton Univ. Press, Princeton (1956)MATHGoogle Scholar
  7. 7.
    Christensen, L.W.: Gorenstein Dimension. Lecture Notes in Math, vol. 1747. Springer, Berlin (2000)Google Scholar
  8. 8.
    Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions-a functorial description with applications. J. Algebra 302, 231–279 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Enochs, E.E., Jenda, O.M.G.: Gorenstein injective and projective modules. Math. Z. 220(4), 611–633 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Enochs, E.E., Jenda, O.M.G.: Relative homological algebra. Walter de Gruyter, Berlin (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Gao, Z., Wang, F.: Weak injective and weak flat modules. Commun. Algebra 43, 3857–3868 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gao, Z., Zhao, T.: Foxby equivalence relative to \(C\)-weak injective and \(C\)-weak flat modules. J. Korean Math. Soc. 54(5), 1457–1482 (2017)MathSciNetMATHGoogle Scholar
  13. 13.
    Gillespie, J.: The flat model structure on Ch\((R)\). Trans. Am. Math. Soc. 356, 3369–3390 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gillespie, J.: Model structures on modules over Ding-Chen rings. Homol. Homotopy Appl. 12(1), 61–73 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189, 167–193 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Holm, H.: Gorenstein derived functors. Proc. Am. Math. Soc. 132(7), 1913–1923 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hovey, M.: Cotorsion pairs and model categories. Contemp. Math. 436, 277–296 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hu, J., Ding, N.: A model structure approach to the Tate-Vogel cohomology. J. Pure Appl. Algebra 220(6), 2240–2264 (2016)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Iacob, A.: Generalized Tate cohomology. Tsukuba J. Math. 29, 389–404 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26, 561–566 (1970)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Salce, L.: Cotorsion theories for abelian groups. Symposia Math. 23, 11–32 (1979)MathSciNetMATHGoogle Scholar
  22. 22.
    Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algeba 324, 2336–2368 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65, 121–154 (1988)MathSciNetMATHGoogle Scholar
  24. 24.
    Veliche, O.: Gorenstein projective dimension for complexes. Trans. Am. Math. Soc. 358, 1257–1283 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Wang, Z., Liu, Z.: Strongly Gorenstein flat dimensions of complexes. Commun. Algebra 44, 1390–1410 (2016)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yang, G., Liu, Z.: Cotorsion pairs and model structures on Ch(\(R\)). Proc. Edinb. Math. Soc. 54, 783–797 (2012)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Yang, X., Ding, N.: On a question of Gillespie. Forum Math. 27(6), 3205–3231 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhao, T., Xu, Y.: On right orthogonal classes and cohomology over Ding-Chen rings. Bull. Malays. Math. Sci. Soc. 40, 617–634 (2017)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  • Jianmin Xing
    • 1
  • Tiwei Zhao
    • 2
  • Yunxia Li
    • 3
  • Jiangsheng Hu
    • 4
  1. 1.School of Mathematics and PhysicsQingdao University of Science and TechnologyQingdaoChina
  2. 2.School of Mathematical SciencesQufu Normal UniversityQufuChina
  3. 3.Department of Basic ScienceJinling Institute of TechnologyNanjingChina
  4. 4.School of Mathematics and PhysicsJiangsu University of TechnologyChangzhouChina

Personalised recommendations