Bulletin of the Iranian Mathematical Society

, Volume 44, Issue 6, pp 1471–1484 | Cite as

Comparison of Two-Parameter Bernstein Operator and Bernstein–Durrmeyer Variants

  • Ali Aral
  • Hasan ErbayEmail author
Original Paper


The quantum calculus and the post-quantum calculus have recently gained broad popularity in computational science and engineering due to their applications to diverse areas such as solution of differential equations, approximation theory and computer-aided geometric design. Herein, we consider two parameters but two different modified Bernstein–Durrmeyer operators along with two-parameter Bernstein operator. We obtain estimates to the differences between the Bernstein operator and each modified Bernstein–Durrmeyer operator using classical modulus of continuity. In addition, similar estimates are obtained for Chebyshev functional of these operators. Main purpose of using two-parameter operators is to allow us more flexible approximations compared to their classical versions, namely depending on values of parameters, the approximation can be speeded up. Numerical results presented approves the theoretical results.


\((p, q)\)-Bernstein operator \((p, q)\)-Bernstein–Durrmeyer operator \((p, q)\)-genuine Bernstein–Durrmeyer operator 

Mathematics Subject Classification

Primary 41A25 Secondary 41A10 41A35 


  1. 1.
    Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publishing Corp, vol. 17 (1960)Google Scholar
  2. 2.
    Lupaş, A.: A q-analogue of the Bernstein operator. Open Math. 9, 85–92 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Mursaleen, M., Khan, A.: Generalized q-Bernstein–Schurer operators and some approximation theorems. J. Funct. Spaces Appl. 205, 1–7 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Muraru, C.V.: Note on q-Bernstein–Schurer operators. Stud. Univ. Babes-Bolyai Math. 56(2), 489–495 (2011)MathSciNetGoogle Scholar
  5. 5.
    Hounkonnou, M.N., Désiré, J., Kyemba, B.: R (p, q)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series (2006). arXiv:math/0602613
  7. 7.
    Katriel, J., Kibler, M.: Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers. J. Phys. A: Math. Gen. 25(9), 26–83 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and p, q-special functions. J. Math. Anal. Appl. 335(1), 268–279 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-calculus in operator theory. Springer, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer, Berlin (1993)CrossRefGoogle Scholar
  11. 11.
    Gupta, V., Aral, A.: Bernstein Durrmeyer operators based on two parameters. Facta Univ. Ser. Math. Inform. 31(1), 79–95 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gupta, V.: (p, q)-Genuine Bernstein Durrmeyer operators. Boll. Unione Mat. Ital. 9(3), 399–409 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Acu, A.M., Raşa, I.: New estimates for the differences of positive linear operators. Numer. Algorithms 73(3), 775–789 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Randriambelosoa, G.E.: On a modified Durrmeyer–Bernstein operator and applications. Appl. Math. Res. Express. 4, 169–182 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Berlin (2014)CrossRefGoogle Scholar
  16. 16.
    Mursaleen, M., Ansari, K.J., Khan, A.: On (p, q)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Oruç, H., Phillips, G.M.: q-Bernstein polynomials and Bézier curves. J. Comput. Appl. Math. 151(1), 1–12 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Design 5(1), 1–26 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bhatti, M.I., Bracken, P.: Solutions of differential equations in a Bernstein polynomial basis. J. Comput. Appl. Math. 205(1), 272–280 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lorentz, G.G.: Bernstein polynomials. Am. Math. Soc. (2012)Google Scholar
  21. 21.
    Aral, A., Gupta, V.: (p, q)-type beta functions of second kind. Adv. Oper. Theory 1(1), 134–146 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of (p, q)-Bernstein operators. Iran. J. Sci. Technol. Trans. A Sci. 1–6 (2017)Google Scholar
  23. 23.
    Gupta, V., Tachev, G.: Approximation with Positive Linear Operators and Linear Combinations. Springer, Berlin (2017)CrossRefGoogle Scholar
  24. 24.
    Milovanović, G.V., Gupta, V., Malik, N.: (p, q)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana 1–19 (2016)Google Scholar
  25. 25.
    Malik, N., Gupta, V.: Approximation by (p, q)-Baskakov–Beta operators. Appl. Math. Comput. 293, 49–56 (2017)MathSciNetGoogle Scholar

Copyright information

© Iranian Mathematical Society 2018

Authors and Affiliations

  1. 1.Mathematics Department, Arts and Science FacultyKırıkkale UniversityKırıkkaleTurkey
  2. 2.Computer Engineering Department, Engineering FacultyKırıkkale UniversityKırıkkaleTurkey

Personalised recommendations